Surly Big Fat Dummy Wideloaders

“Wideloaders” are a load-supporting framework that sit level to the rear axle on a cargo bike. They are not made for the Surly Big Fat Dummy, but the frame has fittings to attach them. Here is how I made mine with no special tools or fabrication skills.

The Surly BFD Project Menu
Prologue
Episode 1: 138L (each) Panniers… Seriously?!
Episode 2: Big Fat Dumb Wideloaders (you are here)
Episode 3: Kickstand Kaos
Episode 4: Add a Flight Deck. And a Hangar
Episode 5: Odds and Ends

Do It Yourself (its not like you have a choice)

Wideloaders go hand in hand with the use of XL panniers like Great Big Bags 2.0. If you have Wideloaders that your bags sit on, it lets the frame support part of the load directly and increases carry capacity. So, for my Surly Big Fat Dummy, I definitely wanted these.

Big Fat Problem

The Big Fat Dummy is a unique frame design. It is similar to the Surly Big Dummy. There’s a family resemblance to XtraCycle-compatible frames. There are many factory-original and aftermarket options for those bikes, but similar is not ‘identical’ or even ‘compatible’. BFD owners figure this out pretty quick.

The image below shows a bright green Surly Big Dummy frame overlaid onto a Big Fat Dummy frame. The front wideloader mounting points are lined up (look for the frame hole/white circle on the bottom tube extension, aft of the bottom bracket). This overlay makes it clear the rear mount holes don’t match. You need Wideloaders designed specifically for the Big Fat Dummy frame.

Image credit: Surly Bikes (click image for original page)

Unfortunately that product doesn’t exist. If you want them, you make them. So I did.

Lets Get Started

Your wideloaders are going to mount in the front and rear hollow tubes that already exist in the frame. These cross-tubes are both 7/8″ Inside Diameter (ID), so you will need to buy 7/8″ Outside Diameter (OD) tubing. Luckily, this is widely available. However you will find a variety of thicknesses, heat treatments and alloys. I’ll pass along what I think is the best to use, and, well, what I used. I’ll let you decide whether or not to follow my lead or make some changes, as what I did turned out to be really REALLY heavy duty, but also heavy for what it is.

What about copper tubes?
You can go a different way and use copper tubing and soldered joints for a very, very cool look. But its no lighter than the alloy and screw-together approach I used, requires semi-permanent solder connections and a whole lot more effort (and money) to put together. It will look incredible when its done though. If you go this route yourself, note that copper tubing is designed to have a specific liquid flow rate, so it is measured via its Inside Diameter rather than Outside. So while I am using 7/8″ tubing, your typical copper tubing that fits is going to be known as 3/4″ tubing. The deciding factor to proper fit will be wall thickness so pay attention when doing your buying.

Parts List

27.49  6063-T5 7/8" OD x 7/16" ID (0.219" wall) x 8 ft
43.00  AL7005 22.2mm OD x 1.8mm wall x 1000mm len (qty 4)
43.96  Stainless boat hand rail 90-degree elbow (qty 4)
43.92  Stainless boat hand rail Tee (qty 4)
12.88  Stainless Mil Spec 0.89" ID Washer 10 pak
11.98  2:1 1" heat shrink - 25 ft
14.98  Reinforced 7/8" ID garbage disposal hose
       (10 ft) (qty 2 optional)
 3.00  Stainless steel M6 socket caps
       flat washers
       nylock nuts (2 ea)
29.74  2" x 30" hook/loop cinch straps 6 pak (qty 2)
31.90  Ratcheting tube cutter (optional)
29.99  Inner/Outer Pipe Reamer (optional)
10.99  12" Flat Bastard cut file (optional)
----------
In original build but replaceable with disposal hose
----------
12.74  Corrosion resistant sleeve bearing (2)
 6.24  Abrasion-resistant cushioning washer 10 pak

Total project cost (not counting shipping): About $230.00. $304 with the optional tools added in.

Notes on the Parts List

Tools

  • Your life will be a lot easier with the tube cutter and ratcheting attachment. It makes doing the job of making repeated cuts easy and gives a perfect cut every time.
  • Once you are done cutting a tube, even if done with the tube cutter it will still have sharp and somewhat bulged edges. Use the reamer to give a finished bevel to the outer and inner edges. You could use a straight file, or a tiny long round file, and eyeball it until done. But this specialized tool does a quick, clean job in just a couple seconds.
  • You need a few passes with a flat file on the flat of your cut pipe to smooth out the surface after the cut. Well actually you don’t need it, but between this Flat Bastard and the reamer you will never cut yourself on a sharp edge. And yes I picked this file to link in because they called it a Flat Bastard (any bastard cut will do, or even a fine cut).
  • If you choose the 6063-T5 tubing you likely also will need a hacksaw. I am not linking one or giving a price. If you don’t already have a hacksaw in your toolbox you may as well pull your toga up over your head and accept your fate.

6063-T5 Tubing

This is an extreme-duty choice. With a wall thickness of just under 1/4″, it is heavy stuff. But use two of these as thru-frame cross-pieces and your wideloaders will not bend even with well over 100 lbs of cargo loaded on them. My record is about 160 lbs (72.5 kg) and I was glad I over-did it, especially when hitting road bumps… an overloaded bike that weighs over 500 lbs with the rider onboard is a runaway freight train: you have to just hang on and bulldoze thru things you would otherwise avoid on the ride home.

This tubing is too thick for the tube cutter. You can use the cutter to get it started, then switch to a standard-issue hacksaw, or find some other method of cutting this very thick tubing. Me, I went cutter+hacksaw. It worked fine, but was something of a pain in the ass.

AL7005 Tubing

This stuff is sold in metric measurements since it is coming from a bicycle frame tube supplier, but the measurements translate to 7/8″ OD tubing with walls about 0.071″ thick, in individual lengths of 39″. That is roughly the thickness of bicycle handlebars. As aluminum tubing goes, its thicker than most reasonably-priced alternatives, which is good. Its also much lighter than the 6063 I used for the crossbars. You can sub in two tubes of this 7005 for crossbars less insanely thick than the 6063. They will still be strong.

The pipe cutter makes life a whole lot easier.

Stainless Boat Rail Fittings

Being thick stainless steel, these marine boat fittings are all about durability and strength. Also they are heavy as hell for bicycle components. Once again, this is a job where weight weenies need not apply. You put these suckers on and screw down their grub screws into the softer alloy tubing and they will hold fast, regardless of whether or not you forget how wide the bike is and walk it into the corner of a wall … in that contest, the wall loses.

hmmm… This piece is not on the parts list

Worth Noting: In many of the pics here, you will see I am using tee and quad-fittings that allow more connections than are necessary for the project in this post. Thats because I was building with an additional integrated center-mount kickstand in mind. We’ll save that for a separate article. Stick to the parts in the parts list to just build the wideloaders.

Garbage Disposal Hose

What in the hell is that doing on this list? Fact is, I didn’t build my wideloaders originally with this in mind. You will see many pics here with the older bushings, washers and heatshrink tubing for coating. I got the idea a few months afterwards. Covering the outer tubes in thick tubing permanently dingproofs them and helps protect whatever I lean the bike up against.

Once I found cheap PVC garbage disposal hose, I realized I could further use it to replace almost all of the washers and spacers in the build.

Originally I used 3 layers of cheap heatshrink to cover the tubes, plus bushings and washers. The garbage disposal tubing replaces all of it and saves about $30 on project cost.

Since I had already built mine, I personally only used the disposal hose on the outer facing tubes, leaving the two inner lengthwise tubes covered in heatshrink. However, you could buy two units of the disposal hose and sheathe all of your tubing with it. Simpler, looks kinda neat and about the same cost.

25 feet of Heat Shrink

The need for this stuff was largely eliminated with the use of the garbage disposal hose. However, you still need about 2 feet of it (20″, actually) to line the crossbars inside the frame. In a cruel lesson in Chinese capitalism, 10 feet of 2:1 heat shrink is one cent more expensive than 25 feet. So what the hell lets get some extra. Also, the 3:1 that is widely available in shorter lengths is the marine grade with adhesive glue inside and thats too thick for our crossbar liners. So… maybe its not a bad idea to check your local hardware store before buying this stuff. Its not going to be any cheaper but if you don’t want an extra 23 feet of 1″ heat shrink tubing sitting in a drawer for the next decade, a local buy might fix that.

The Sleeve Bearings and Washers

I used these in my original build and you can see them in all the pics. They were optional then and, later on when I discovered the garbage disposal tubing, were replaceable in the project. The one remnant I would still use regardless are the “mil spec” steel washers. Why mil spec? They are cut to closer tolerances than ordinary washers. If you want a really snug fit to your tubing, with a not-gigantic OD to go along with it, these washers are pretty much the best option.

If you use the disposal hose to replace the cushioning washers and bushings for spacing, I would still use the mil spec washers up against the frame to ensure the most solid contact possible.

Set the fastening screws facing UP on your tee fittings. If they come loose you stand a chance of seeing the problem before they become UFOs.

Construction / Assembly

NOTE: While I often go into painful levels of detail, I won’t be specifying measurements on cut dimensions. I don’t want you taking my word for what works on your bike and your fittings. I’ll make one exception to this: The width of the crossbars, since that requires some thought and is worth discussion. We’ll get into that below.

Step 1: Cut the Crossbars to Desired Width

This is maybe your most important project decision. How wide do you go? Your answer will help determine what you bump into while trying to move the bike around, or smash into as you try and negotiate a narrow passageway (like a shared use path entrance). At a glance, a good rule of thumb for maximum width would seem to be ‘no wider than your handlebars’. That will mean whatever you are riding thru, if your handlebars fit then most likely the wideloaders will not snag, either.

While you are figuring this width out, know the center section of the Surly Big Fat Dummy is exactly 10″ wide.

The BFD 26″ bike in Bliolet uses Answer ProTaper bars; 810mm wide. That works out to almost 32″ of width, give or take. So knock 10″ off of 32″ (the width of the center section) and divide by two. Following the no-wider-than-handlebars thinking, you would have wideloaders 11″ wide on each side. The 1-piece crossbar would be a total of 32″ in width.

Thats way too wide. Forget about the handlebar rule. It sounds like a good thing to have that nice big shelf, but it will be VERY ungainly to have that much hanging off the side. Don’t even think about it. Another issue is trying to get the bike thru a door. Think how much fun it will be to get a bike 32″ wide (and almost 8 feet long) thru a doorway that is commonly no more than 36″ wide. And some doors are 32″ wide.

I settled on a bar that is 26″ in length. Subtracting the 10″ center section and dividing the remainder means I have an 8″ crossbar extension. The elbow will extend my width a bit more. So figure in the end, I have about a 28″ wide rear platform. Here again the dictating factor is getting thru a doorway (I park in a garage every day and bring the bike in thru a door at a sharp angle).

If you are unsure, its better to guess on the too-wide side. It is a whole lot easier to file or cut metal off than it is to put it back on again (fun fact: this is also the First Rule of Gunsmithing).

Step 2: Drill And Fit the Crossbars

This part is easy. I took the 26″ cut crossbar and measured it to 13″. Then I used a red Sharpie to mark the center. In the pic below, a test-fit, you can see the red mark coming thru the centered frame hole. Once you have confirmed the spot is in the right place (measure!), pull the tube out and drill a centered hole straight thru at the spot of that marker dot. Drill large enough for an M6 bolt.

Finalize Crossbar Fitment

Once you have drilled that hole you can fit the tubing right inside the 7/8″ ID frame tubing and attach the crossbar, centered exactly to the frame and fixed in place with a stainless M6 socket cap bolt, nylock nut and a washer on each side. However, there will be a small amount of play between the crossbar and the frame, which means these things will rattle. We can’t have that.

  1. Add a length of heatshrink – cut to a 10″ length to the center section of the crossbar. Using your heat gun, shrink the tubing so it sits tight on the very center of the crossbar. The hole you drilled will be a clearly visible depression on the bar.
  2. Get a bit of dishwashing liquid or similar non-permanent lubricant and smear it over the now-snug heatshrink.
  3. Push the crossbar into the frame. It will now be very snug thanks to the added diameter of the heatshrink. The dishwashing liquid will let you push the bar into the hole while leaving the heatshrink attached and placed on the center. You may have to experiment with lesser lengths of heatshrink as it might want to be pushed back by the frame as you get further into the frame and closer to centering it (I had to spiral wrap sandpaper on a wooden dowel and run it thru a few times to debur the interior of the frame. If you already own a cylinder hone of the right size this is a place you might carefully use it).
  4. As you push thru, when you see the depression in the center frame hole where heatshrink sags in under your drilled bolt hole, stop. Now just shove the washer’d bolt into that hole. It will break the heatshrink on its own. Clamp in with the nut on the other side.
  5. Repeat the process with the other bar.

Your crossbars are now tightly, permanently fit. Bolted into the frame and lined with a thin rubbery material, they will not rattle.

Step 3: Fit the Tee’s and Inner Lengthwise Bars

Now that the crossbars are bolted in, its time to attach the inner bars. What you see in the pic below is a test fit where I hadn’t yet finished Step 1 above. The crossbars aren’t yet bolted in. But the procedure is well-illustrated. Loosen the grub screw on your front tee. Stuff the bar into it until it stops. Measure how far it went in. Position the bar atop the rear tee. Its going to go in the same distance, so measure accordingly. Thats your tube length. Cut to size and if it fits, do one more like it for the other tube on the other side.

To do the actual fitting once the tube is cut, loosen the grub screws in the tees so they are still in place, but do not intrude at all into their opening (or remove them completely and stash in a safe place). Place the cut tube into each of the tees. Make sure the grub screw holes are facing up for both tees. Now slide this assembly over the attached crossbars and slide them inward to their final position. If they do not slide smoothly to the interior – if they hang up halfway down the crossbar for instance – you may have cut your tube a bit too long and need to make a second cut, or do some filing if its a near thing.

This is a good time to mention that for placement on the drive side, you want the inner bar to clear the derailleur when it is on the smallest cog, with some extra room to spare that allows for frame flex (although these wideloaders can’t help but stiffen the frame). Keep this in mind when you are deciding final placement on the drive side inner bar.

When the tees and tube are sitting, unbolted, in place, move on to the next step.

Position the inner tube on the drive side so it doesn’t hit the derailleur in high gear.

Step 4: Fit the Elbows and Outer Lengthwise Bars.

Repeat the process from Step 3 for the outer bars. This time measure fitment with the 90-degree elbows. In the pic below note I had a tee in place in the rear – I was considering doing an extension out behind. In the end I thought an 8-foot-long bicycle was plenty and squared it up with an elbow.

After cutting the tubes, do the same procedure as in the previous step with regard to placing the bar and elbows onto the frame without permanently attaching anything.

When the tubes are all cut, everything is lined up and you know it all fits, its time for Step 5.

Step 5: Add The Bumpers / Final Assembly

Since you didn’t actually tighten anything down in Steps 3 and 4 above, its easy to take it all back apart. Do so now, leaving only the crossbars, which should already be firmly assembled. Your next moves, in order:

Straighten out Your lengthwise (long) pieces of Disposal Hose

OK this is out of order because you should do this a day or two in advance of your actual build party. You want to give the hose some time to uncurl itself.

Off the shelf the hose is kind of a pain in the ass to deal with, considering between two and four lengths of it need to be cut fairly precisely to a bit under a 3-foot length. I found two ways to deal with this (and used both of them). First, the easiest way:

If you have some long lengths of 1 1/2″ hard PVC pipe laying around, stuff this curved tubing inside of it. Let it sit like this. You can do it with 1 1/4″ PVC but its a tight fit and really tough to get it thru in lengths any longer than about 3 feet.

If you don’t have PVC, use your actual wideloader tubing. If you are following the parts list above you have four individual tubes that are longer than you will need. Work with those. This is going to be a snug fit and require some elbow grease to stuff it on there. I stuffed on a couple of feet, then dripped on some WD40 and let it penetrate (there’s a bit of slack to let it dribble in) and just worked it. Once I had used enough of it (used… not over-used), and let it spread, they slid on and off easily. But it takes a little time and patience. Afterwards, wipe off the tubes. I didn’t worry about the residual WD40 inside the hose itself. Just enough remained to make final assembly straightforward.

I let this sit overnight and added a length of PVC on the still curly side to help straighten the rest of it

Cut spacers for frame-to-inner-tee fitting

You will cut spacers to desired lengths from the disposal hose. On each corner, use one of the milspec washers up against the frame for a total of 4 washers needed. The milspec sizing will give the washer a nice even fit.

On the build you see pictured, I used 1.5″ corrosion resistant bushings in the rear for a nice look and exactly the spacing from the frame I wanted. In the front, I stacked three of the rubber cushioning washers, sandwiched by two milspec washers. This front scheme was a leftover from earlier plans that did not include bolting in the front crossbar. Thats what you get when you plan a build and buy parts before you get the bike in hand to work with directly. You will want to just cut a short length of hose and back it with a washer.

Line the inner lengthwise bars

You are going to do one of three things here:

  1. Line the inner bar with 2 or 3 layers of heatshrink. Do multiple layers in case you scuff or ding the bar. Just one layer is easily torn. This was my initial build because its all I had figured out how to do at the time.
  2. Line the inner bar with a length of garbage disposal hose. to match all the other bars. Using the disposal hose is cosmetic on the inner bar, but it is more durable and will give you a consistent, beefy look. Doing this is almost the same cost as using the comparatively fragile heatshrink. If starting over from scratch, I would go this route.
  3. Do nothing and leave the bar bare. If you like the bare look then great you are done.

Install the inner lengthwise bars

At this point you are ready to do the final install of the inner lengthwise bars. Having attached any desired covering to the bar, loosely reattach the tees to the bar and slide it on just as in Step 3, again making sure the grub screws for the tee fitting are facing up. When in place up against the spacers you cut and installed above, its time to tighten the screws.

This is one of the few times a thread locker is properly in order vs. being a misused crutch. I personally prefer Vibra Tite. The blue gel is easy to apply, never hardens and holds tight regardless of vibration and impacts over time. Goop up the threads of each grub screw and tighten them into the softer alloy tubing until they are roughly flush-fit to the fitting. Nothing is going anywhere once that is done.

Line the remainder of the crossbar

Now you need to line the next section of crossbar if you care to do so. At this point I will say that heatshrink should not be an option – go with the flexible PVC (or do nothing if thats your bag). Cut each length to size and slide onto the tube.

Line the outer bars (or don’t)

Almost the same procedure as the inners: Affix your elbows to the tube and attach the tube assembly to the crossbars. Now you know how much exposed crossbar there is. measure this and cut your outer bar liner/bumper. Tighten ONE of the elbows onto the outer bar and remove the elbow from the crossbars. Now you are holding the outer bar with one elbow attached. Take your cut liner and slide it down until it is snug against the installed elbow. If you cut the liner to the proper length, it is now installed perfectly centered.

Since I did my bumpers after the initial build, I lined the outer bars first – the crossbars are bare in this pic.

Install the outer bars

Loosely attach the second elbow to the outer bar. Slide the assembly over the crossbars. Tighten all the grub screws down so there are no gaps, using thread locker and again tightening so the grub screws are roughly flush with the outer wall of the fitting.

We’re almost done .

Step 6: Add the Floor (Straps)

Up to this point we’ve created an empty framework. It needs a floor to help hold up the Great Big Bags that will be sitting on top of it. I opted to use 2″ x 30″ hook-and-loop cinch straps, 4 on each side, which are movable, super lightweight, have some give to them but at the same time are very strong.

I had to buy two 6-packs of straps to get what I want, so I could add more straps, but 4 is enough and more importantly I can space the straps in such a way they work in complement to the four pannier straps I use to provide additional support on heavy loads.

Since the bag straps also have to wrap around the inner bars of the wideloaders, the floor straps have to be out of the way, and what you see is spaced out to let me interleave the bag straps between the floor straps.

A Final Note on the Floor

At around $30, the floor straps added a noticeable bump up in job cost. Is there a cheaper way to do this? Probably. I considered a bunch of ideas including diagonally weaving super thick bungee cord into a floor. I have a spool of the stuff in my garage.

What about more tees and crossbars with the leftover tubing bits? Without question that would look great and be supremely sturdy… but is it necessary? I don’t think so, and I didn’t feel like taking the time, adding the weight or going to the expense. But for sure, it would look great. In the end I felt the straps got me to the finish line immediately and were easiest to manage over time.

What about skateboards?

Well, that would work great. If you are a parent and your wideloaders need to serve as platforms for little feet, and maybe you want your kids to be able to stand on them, then a skateboard is a great option. If you use the really thick 6063-T5 tubing it will for sure be well-suited to a couple of M5 holes drilled thru each bar to attach that board, front and rear. From there, find a blank deck to your liking and bolt that sucker on.

The floor straps are spaced so I can interleave two more bag straps between the two center floor straps for extra support with heavy loads.

Job Done. They Work Great!

These pics are from the initial build, and reflect the parts I used for spacers at that time, along with some showing a different strap setup. Your results may vary so the bags you buy or build may dictate a still different approach.

The Pacific Fleet

or… I Have Too Many Damn Ebikes

Since I got back into bikes (thanks to ebikes being a viable platform to let this cardiac-issues ex-cyclist start riding again), I have gotten right back into building bikes up, oftentimes from scratch. At this point I really have to stop simply because I have no more room to park the things.

Up to this point I have only written about my Mongoose Envoy, a very recent arrival, and have just begun getting into my Surly Big Fat Dummy, which is more recent still.

What else is in the stable? I’ll do some very quick mentions here and then over time branch out and describe each more fully in separate posts.

The Great Pumpkin

So named because of its very nice bright candy orange color (done at a local powder coat shop for next to nothing) you can call this one my third generation of 2wd bikes. Twin 35a controllers. A single custom-built 30ah 52v (14S9P) battery with a BMS able to handle 90a continuous current. Twin 750w-rated geared hub motors that commonly peak (each) at over 1700w. This bike accelerates like a bullet if I let it do so. But to keep the frame in one piece and me from being launched into traffic I have toned down both motors. Now I am merely the first vehicle to the other side of the intersection after a stoplight turns green.

It has synchronized dual pedal assist as well as brake cutoffs that individually shut off both motors on application. It has thousands of miles on it; all street commuting. Gearing is set up for 34 mph at about 70 rpm cadence. That is just a bit faster than the motors can power the bike, so if I want to cruise down the street at 30+ mph I have to work at it a bit more than you would think for a fairly high powered ebike. I get a strong workout due to this gearing.

The frame is a chromoly Chumba Ursa Major, with a Surly Ice Cream Truck front fork where the brake adapter on that fork was specially modified to get around the ICT’s rear-wheel brake spacing.

2Fat

While the build of this bike pre-dates The Great Pumpkin, it was actually designed as a next-gen design to follow another 2wd bike (see the Purple Thing below) that pre-dated both bikes. So if the Pumpkin is 2wd 3.0, this one is 2wd 2.0. This one does not have the single unified battery, and its handlebar config is not as well done (two clocked-position throttles are on the left grip instead of one on each thumb… I hadn’t discovered shifters that would allow me to do the latter yet). However, it also sports a 30a, 1750w mid drive powering the back, and has the same fat hub motor as the Pumpkin powering the front. It too has dual pedal assist, but done in a completely different way given the dissimilar motors and controllers. 2Fat was created because of the learned weaknesses of even a powerful dual geared hub design in hill country. 2Fat was designed to climb walls effortlessly, and it will, without issues of overheating or strain.

100mm custom wheels with a DT 350 Big Ride ratchet rear hub and steel cassette body, Lynskey titanium frame is a prototype made along the lines of Chumba’s Ursa Major ti version of that frame. Possibly it was made as part of a pitch by Lynskey to make the frames for Chumba. Its hard to say for sure so essentially, the frame is unique, or close to it. I do know it is visually almost identical to the Chumba production models except the dimensions do not match any of their production frames.

The Smash

A big departure from my usual bikes. The Smash is a 29er … and a bike with no job. With a 3kw Cyc X1 Pro motor, a 50a ASI BAC800 controller and a 20ah 52v backpack battery, this bike is strictly a hot rod. And no, despite those big power numbers its not as powerful as you might think. Certainly it doesn’t tear up trails. This is one of the last alloy frames Guerrilla Gravity made before switching to carbon fiber later in the same month I placed my order. The MRP Ribbon fork on the front is a jewel. Also has a RockShox coil spring, a complete SRAM EX drivetrain and my usual Magura MT5e brakeset.

I’m glad I took these pics right after the build was completed because it will never be this clean again. Ever. Also the pump location and top tube bags only lasted as long as this photoshoot as they violated my ‘festooning’ rule.

The Fixed

An even bigger departure is my Luna Fixed, which despite having custom DT wheels, is largely a factory bike and was bought primarily as a test platform. I fell in love with the design concept (stealth ebike), but it also had an internally geared hub, a Gates belt drive and torque sensing. These were three technologies I had yet to experience and I decided this bike was going to be how I learned about all three on one bike.

Its the only ebike I have ever ridden that feels like a road bike from the 1970’s. I re-did the handlebars to a more urban narrow config, added bar ends, changed the stem, saddle and pedals… not a lot else. Its for sale on eBay now as I’m largely done with it, its still effectively new and I never ride the thing. I’ve always been a commuter and a utility rider and this bike is purely a leisure exercise, or for someone who needs to make a quick store trip and doesn’t already have a stable of bike better suited to the job.

I will miss one big thing when it sells: Its the only bike I can just toss into the back of my SUV and not make a major production out of loading onto a super heavy duty bike rack. Like recreational riding, I don’t do that either but someday I bet I wish I still could.

The Stormtrooper

So named because of its black/white color scheme. The Stormtrooper is just a really nice, simple fat tired ebike – with deep dish 90mm carbon fiber rims. Noteworthy on this bike is that it has plenty of motor and battery cabling running all over the place, but I sheathed the wires (even the brake and shifter lines) in white heat shrink. The matching color effectively hides all the wiring in plain sight for a very clean look. the bike is light and fun, with good range from its mid-sized 12ah potted ‘indestructo’ battery.

This frame was a rescued Motobecane Lurch that was stripped, sand blasted and powder coated.

The Mongoose

One of the few bikes I have written up here, The Mongoose Envoy has its own extensive writeup already. The Pacific Fleet’s first aircraft carrier thanks to the 44″ skateboard deck.

The Big Fat Dummy

The most recent addition to the Pacific Fleet, The Surly Big Fat Dummy is its second aircraft carrier, with a 40″ skateboard deck (and below-deck hangar) putting the length of this behemoth at just over 8 feet. This bike is in the beginnings of its build writeup here on the site.


Sunk

In no particular order, the ships that are no longer in the fleet

Frankenbike

Now in the hands of a friend who needed a ride. Frankenbike was cobbled together from leftover parts from an upgraded electric bike, plus other goodies. It was my first 2-rack cargo-oriented bike. I painted the frame myself using Main Force Pursuit (MFP) Yellow. Google that if you don’t get it. The frame is identical to the Purple Thing, below.

The Stump

Murdered by a careless auto driver who t-boned it and me while I was thoughtlessly riding slow in the bike lane with headlights and after making eye contact. The Stump was a little hotrod that never made it past the initial shakedown cruises before its demise. Paid for by the other driver’s insurance company but left in my possession, I donated the damaged but still fully functional motor to another cyclist who could make good use of it

The Purple … Thing

Essentially this was 2wd 1.5. I transferred my parts from the 2wd 1.0 bike when I cracked the frame, and made a few improvements. Since it was an emergency build to get my daily commuter back on the road, I didn’t do a lot of measuring and took what I could get framewise. It didn’t quite fit me and a year later one of these motors and some of these parts moved to The Great Pumpkin. The frame is still sitting dust-covered in a corner of my garage.

The Colonel

The bike that got me started back on two wheels again and changed my life for the better. A Sondors Original fat ebike whose cost was so low at around $700, I was willing to toss the money out the window and take a chance this whole ebike thing was going to allow me to get back onto a bicycle. By the time my first year was up I had put more than 4000 miles on it. I had also changed out almost every component but the frame, and converted it to 2wd – something you will still see supposedly experienced builders tell you is impossible to properly function for a whole host of reasons that sound smart but are all dumb and wrong, and easily demonstrable as such if you build one with your hands rather than type about one with your fingertips on a keyboard.

The Colonel died with his boots on. After almost 6000 miles on the road, supporting a whole lot more power and speed than it was ever designed to bear by its original Chinese overlords, the rear seatstay cracked at the lower rack boss. My philosophy on frame cracks is not to repair them as where there’s one crack there will likely be more showing up soon. Components were transferred to The Purple Thing along with several upgrades.