Add a Flight Deck. And a Hangar.

The Surly Big Fat Dummy has a great big deck in the back. Using a 40″ kicktail longboard and some hardware, Lets make it bigger. And a double decker to boot.

The Surly BFD Project Menu
Prologue
Episode 1: 138L (each) Panniers… Seriously?!
Episode 2: Big Fat Dumb Wideloaders
Episode 3: Kickstand Kaos
Episode 4: Add a Flight Deck. And a Hangar (You Are Here)
Episode 5: Leftovers
Episode 6: Electrification

In the Beginning…

Back when I put together the Mongoose Envoy Project, I used a skateboard deck to cover over the long, but only marginally-useful-on-its-own rear framework to create what ended up being an aircraft carrier landing deck.

I started out with a 33″x10″ double kicktail which I mounted on top of eight 25mm tall by 13mm dia. spacer posts. The idea behind the spacers was to give me some working room to attach a net to the top of the deck, and have room to easily mount its hooks to those posts. It worked well, but I left money on the table with only a 33″ deck. I could go longer. So I did. I found a 40″ longboard with a single kick and mounted it on 10 posts, this time.

It was great, but of course, I thought I could go one better. So I scored a 44″ double-kick longboard, and – since the 25mm posts were a bit fiddly trying to get my fingers in that small space – swapped out for taller 40mm replacements. I also made some other improvements, and that deck remains on that bike as you see it here to this day.

Fast Forward To The Present…

Now I have a Surly Big Fat Dummy, and I want to do the deck idea one better (AGAIN!). I still have the 40″ deck left over from the Mongoose build. Since the BFD is already like 8 feet long I don’t need something that makes it longer, so this ‘shorter’ deck will do just fine. I drilled some new holes, repainted it and took the spacers a step further.

The Next Level (literally)

Unlike the Mongoose, which had nothing but a framework, the Surly Big Fat Dummy already has a pretty good deck as it is. On the Mongoose Envoy I was trying to cover over the bare framework and make something useful. This time I am trying to make something already useful more so.

To preserve the utility of the existing deck, I went with much larger spacers. That created a ‘hangar’ under the deck of this aircraft carrier of a bike. This new hangar’s purpose is to house things that need to be carried along, but generally kept out of sight. Stuff where I can benefit from it being reasonably handy, but kept out of the way.

Great Idea. But first I had to assemble the parts and make the thing.

To give plenty of room between decks, I went to McMaster-Carr and acquired ten 3″ long alloy spacers, 5/8″ outside diameter, sized for 1/4″ bolts. Then I went to Pegasus Auto Racing and, after measuring the exact stack height I would need, grabbed ten AN4 1/4″ hardened airframe bolts of the proper length, along with ten AN970 hardened large-area washers for 1/4″ bolts (for the top deck side) and a bag of AN960 1/4″ x 0.32″ flat washers, where I would need 30 for the deck underside, plus the top and bottom sides of the alloy dummy deck. I wrapped up the party with ten AN365 nylock hex nuts.

Airframe bolts have a specific thread length designed to fit a single bolt and a single double-thick washer. This project uses 4 washers of two different varying thicknesses. Measure carefully.

Wow thats a lot of hardware

Like my previous decks, I wanted to use enough spacers and bolt anchor points to make the deck an integral, structural part of the frame. No wiggling possible. Part of what it takes to do that is to use the widest spacers I can find (the 5/8″ OD are it, and dictated why I couldn’t stay metric). To further solidify the connection laterally, I needed washers everywhere clamping everything.

You can still see the holes from when the deck was bolted to the Mongoose, as well as the holes for the trucks that aren’t there anymore.

And excepting the spacers themselves, its all Grade 8 hardened steel. Its. Not. Moving.

Notice also I used hex bolts and did not bother to work with countersunk heads, matching washers etc. as with the previous decks. This thing is spray painted in truck bedliner to help keep things from sliding around, and the hex bolt edges do the same job.

Airframe bolts exist in a wide variety of very finely diced sizes. I am not giving the size I used because the ones you may need will vary according to the thickness of your top deck.

Here’s what the finished assembly looks like up close:

Now that the aircraft carrier has a landing deck, we find out what we stuff down underneath in the hanger.

Up front, fitting just barely between the front posts, is a 3-amp weatherproof adjustable charger that is a permanent companion to this ebike. In the middle is the toolkit for this bike, containing a pump and all sorts of other goodies. It fits just between the two sets of spacers so it can be dragged out the side. And in the back we see a big thick plastic ziploc freezer bag wedged in between the rear 4 stanchions. Thats the in-case-of-disaster emergency inner tube.

Since then I have added another little jewel:

Thats right. A folding chair. Held rattle free thanks to the net. Stuck in line at curbside pickup? Have a seat and relax.

Take the crap off the top of the deck and you have yourself a work table. Or a coffee table. Or a picnic table. Its 40″ long so use your imagination.

See that net? Its 30″ long before it gets stretched out, and since I ordinarily have the Great Big Bags on the bike, I generally do not need to use the top deck for storage of items up so high. But when I do, that nice long cargo net does a great job.

Here is one of the rare times the bags are full and I need to stack something up on the deck other than a rolled up jacket

Now What?

Got a Big Fat Dummy? And a drill? And a skateboard? Make yourself one of these. Next time you have to sign a peace treaty, host a banquet or make off with an emergency supply of toilet paper… you got this!

BBSHD Programming For The Pedaling Cyclist

(But Not For The Throttler)

There is a follow-on to this article that tinkers with these settings a bit further. In August 2023 I published another update that passed along what I’m doing differently since these articles came out in 2021.

Before you start fooling with your BBSHD settings, take a photo of each screen with your cell phone. If you screw up, you have a quick reference back to your original settings.

The subject of what settings to use when programming a BBSHD comes up now and again. Its a question with a fairly complicated answer that does not lend itself to your typical Facebook 2-sentence post.  So here is the long version. I have my own suite of settings that suit my personal riding style.  I am primarily a pedal-pusher: I want to get exercise when I ride, so I seldom use the throttle. But if you try to take that throttle away, you’ll have to pry it from my cold, dead thumb.

So I want pedal assist that does the following:

  1. Doesn’t lug the motor.  All that does is turn electricity into heat.
  2. Conserves power and extends range.  See above.
  3. Keeps me working, but not too hard … unless thats what I want, and then it has to let me do that, too.

Interestingly, with both my Mongoose Envoy Project and Surly Big Fat Dummy Project, I found what worked great for me on other BBSHD-equipped bikes was completely ineffective on a cargo bike.  I frankly haven’t figured out why this is, but I think it may be because my older builds were just that: Older. Something maybe changed in the firmware.  My PAS settings that conserved major amounts of power while pedaling wound up being totally inadequate. I needed to step up some settings, which I will describe below. While my settings then vs. now are quite different, I don’t see any real penalty in range.

Feel free to tinker using both and see for yourself what happens to your own motor.

How do you program a BBSHD?

Strictly speaking, you don’t. As a for-reals programmer who for most of his life made his living writing code, I have to point out this is not programming even if everyone calls it that. The BBSxx line of motors have a quasi-hidden settings interface. With the right software you can gain access to those settings and simply change them, resulting in big differences in behavior.

Myself, I am using the Black Box sold by Luna Cycles (available here).  The Black Box makes it much easier to go on a ride, tweak as you go and get things just right after only one or two rides. Also, I literally have a half-dozen bikes now with one of these motors. The initial expense of the tool is a lot easier to justify if you are sharing it across the Pacific Fleet.

The other way to do this is to spend about US$18 and buy a laptop cable. Then you use your existing Windows laptop to host the app that you will use to make the aforementioned changes. Here is one place to get that Windows app. I started out doing it this way, but as laptop operating systems evolved I found it increasingly difficult to get Windows to accept the cable’s right to exist. I don’t miss fighting with it one bit.

If there is such a thing as a bible on how to program your BBSHD, its Karl Gesslein’s blog post on the subject (read it here).

If you want to know everything about programming your motor, you should read the blog post linked above.  That post is the definitive tutorial on the interwebs, despite its age.  All I am doing here is calling out some of the things I have done that deviate from the norm, work for me and why it seems that is.  So I will not be explaining things as if you have never seen any of the BBSHD settings screens before.  This article assumes you have at least read the above blog post and familiarized yourself with the screens and settings.

I am not showing original factory settings. Your motor may have settings your vendor considers proprietary. So I am showing screens I have altered and then calling out the bits I consider important.

The BBSHD’s settings are presented on three separate screens: Basic, Pedal Assist and Throttle.

The Pedal Assist Screen (2 of 3)

Yes I know. I’m starting out of order. Its easier to understand this way.

Much of what is on this screen… you shouldn’t mess with. I’ll just hit the high points.

Regardless of what you see here on my own screen, I strongly suggest you leave the first three settings alone unless you know exactly what you are doing.

The Pedal Assist screen on 2Fat – my ti-framed 2wd bike whose motor dates back to about 2016.

Hey… lookit that graph in the image above. Click to enlarge for a better view. It does a good job of graphically representing how most of these settings affect performance, and interact.

Pedal Sensor Type

Some motors are sold configured with BB-Sensor-32. Others with DoubleSignal-24. BBSHD motors reportedly have 24 sensor signals per rotation, which points to the latter as the proper setting. I have tested both and found zero difference in performance or behavior.

Start Current

The lower you set this number, the gentler it is on the controller and your drivetrain. Experimenting with lower numbers will make life easier on your rear freewheel pawls, and chain. Setting this number low is especially helpful if you are running a cargo bike under load and want to be extra careful. Setting this to lower numbers may also be too little startup assist – remember the purpose of the motor is to help you get off from a standing start. This setting only applies to pedal-assist power delivery.

A typical default number here is higher; often around 10. I have found kicking it down just a bit more is much better for your drivetrain if you have a heavy (cargo) bike; especially one that is loaded. Even if its not a cargo bike, how bad can it be to beat on your drivetrain less? Remember you can always mash the throttle if you want <clarkson> power </clarkson>.


UPDATE (19 May 2023): No more messing around: I now use a setting of 2% here as well as on the Throttle Screen below. The reduced wear and tear on your drivetrain is well worth it and there’s no downside to a smooth startup. This also helps noticeably with gentle shifting when you are doing the stutter-step method of gear shifting and you goof and rush the process a bit.


Slow Start Mode

This setting determines how gentle the ramp-up is on your power on start. Starting up too fast can kill your motor’s controller so beware. I am using the lowest setting published in the article I linked above. Here again, why create a situation where you could end up blowing your controller or chewing up your chainrings? I stay on the conservative side.

Stop Delay

A common complaint on the BBSxx motors is you can stop pedaling and the motor keeps going for what feels like a full second. Its a valid concern. 5 is the lowest safe number for the BBSHD so thats where mine is. This setting effectively means your motor stops when you stop pedaling.

BUT it also leaves a hair of rotation which you can use to your advantage when shifting gears: Stop pedaling and in that instant execute your shift. The shadow of remaining power and rotation will be enough to gently complete the shift (SRAM gears will shift in about 1/4 rotation) and you can start pedaling again almost instantly. I call this a ‘stutter step’ in my cadence and I personally prefer it to using a Gear Sensor which automates the process. Tomato-tomahto. Depends on how you learned to use the drive as to which you like better.

Current Decay

This is a big one. Current decay helps decide when your motor cuts power based on your cadence. A huge complaint about cadence sensing is it causes the bike to run away from you and the rider is just spinning the cranks… its called ‘ghost pedaling’. This is part of a complete solution to that problem.

My philosophy is (and plenty of people disagree with this) if I can pedal at a high cadence I don’t need power assist, since I can spin the cranks. By cutting the power back when I start spinning (a.k.a. “clown pedaling”), I not only reduce power consumption and increase range, I also create a scenario where I either keep going on increased amounts of muscle power (which a high cadence demonstrates I can pull off), or I decide to shift to a higher gear, thereby naturally slowing my cadence and telling the motor to give me back some power.

This in turn has the effect of letting me ramp my cadence back up and increase my speed. Done right, this is much closer to a natural cycling experience and either lets me a) haul ass to my destination on the streets or b) get a hard workout. Or both.

Why would anyone disagree on this point? Easy: If you are running a powered bike on singletrack, and you hit a steep hill that is all muddy and root-strewn, you need to spin to keep yourself going up that hill. If the bike gently ramps back power on you, well thats a dirty trick indeed. So… remember what I am describing here is maybe the magic elixir for street riding; but not for an eMTB running hard singletrack.

Stop Decay

This is another setting that helps govern how fast the motor shuts off when you stop pedaling. Zero milliseconds sounds good to me. Stop Delay determines how fast a motor begins its shutdown after you stop pedaling. Stop Decay determines how fast it fully shuts down after the shutdown begins.

Keep Current

This is another companion to Current Decay. When Current Decay decides to cut back power, this percentage determines how much power you keep. So by setting mine to 40%, I am getting a 60% power cut when I spin my legs past the Current Decay threshold. And my Current Decay setting determines how steep the offramp is down to the lower power level.

Here again remember what a bad idea this can be on an eMTB. This is for city riding and commuting, where you want the benefits of boost but you also want the option of getting some exercise and your terrain is reasonably predictable.

The Basic Screen (1 of 3)

The BBSHD is capable of supporting up to 9 assist levels.  Actually its 10 since there is a Level 0, but that level is (nowadays) a special case that you pretty much have to leave at a special setting and can’t adjust.

Each level is defined with two numbers.  A Current % Limit and a Speed % Limit.  They are, in a word, opaque in terms of what they do, and not easy to understand.

Also I have achieved great results in entirely different ways on different bikes. I’m going to show multiple screens.

This is my ‘old school’ screen. It worked as a power-sipper on older BBSHD motors. It does not work the same as it did – probably due to a change in motor firmware on motors manufactured in the last few years.

Note the Level 0 setting of ‘4’ with a speed cutoff of 30%. The intent there was I never really want zero power on pedal-assist and Level 0 provided a very mild bump for times when I am pedaling slowly and going slow… like when on an oceanside bike path loaded with tourist pedestrians, and I am just barely exceeding walking speed.

Here’s the ‘modern’ motor, pedal-assist-friendly version.

This one is apportioning quite a bit of additional power, level by level. It starts at 100% on Level 9 and works its way down the ladder in 5% increments. Likewise, the Current Limit settings start at 100 and work down in 10% increments. These graduations are not the result of scientific study so much as they are a discovery of what feels right, and gives me a range of useful settings, so I do not find myself having to use only low or high settings to get useful results. I can make use of the entire PAS range.

Its worth noting that the Current Limit box is where you limit the amps for regulatory or other reasons (i.e. this is your maniac child’s bike and you want to limit the power output for safety).

Whats with the Assist 0 setting of 1 and 1 above? On newer BBSHD motors, if you set it to anything besides 1 and 1 you wind up disabling pedal assist. I’ve also heard it said if you want to use your throttle while you are at Assist 0, then you set Assist 0 to 1 and 1. Regardless of the actual effect, the motor doesn’t behave desirably at Assist 0 unless you use 1 and 1 there.

I originally used Assist 0 for sort of a crawl mode when wending my way through tourist-laden sidewalks, where I’m going just a bit faster than a walk and don’t want to run anyone over, but still want a touch of power. Since that is no longer feasible, nowadays I use Assist 1 and shift down to a very low gear).

Bafang’s release firmware is a moving target so if this changes I’ll amend this note.

  • Current % is when the power cuts out based on road speed.
  • Speed % is when the power cuts out based on motor rpms

Whats this ‘cut out’ stuff?  Well, remember the ‘decay’ and ‘keep’ stuff we described when going over in the previous screen? These settings help determine when that kicks in. Clear as mud? You’re not alone. ‘Counterintuitive’ is the name of the game when messing with your Bafang motor settings.

Screen 3 of 3: Throttle

So… the pedal assist levels are on the Basic page.  Makes perfect sense. Strangely, the throttle settings are on the Throttle screen.

There are only two things that, really, you should be fooling with here.

End Voltage

Generally this stops at ’35’ or 3.5v. What that gives you is, effectively, a throttle that has two speeds: Completely Off and Full Blast. Not really but it will feel like it.

Instead, if you set End Voltage to ’42’ (4.2v) the result will be a smooth, linear throttle where it will be easy to, say, blip out only 200w of throttle-based assist to your motor while you are struggling to get going after a stop. Being able to dribble out just a bit of power is something your cassette pawls – and your wallet – will appreciate after a few thousand applications. No more clanging noises coming from your poor, soon-to-die rear hub.

Start Current

Hey waitaminute… we had Start Current on another screen too! Yes we did. But that one was Start Current for pedal assist. This one is Start Current for when you mash the throttle.

If you set this to, say, 10%, that means the initial beat-down given to your cassette body by the cluster (that gets jerked forward by the equally unhappy chain) is only 10% max the power of the motor. The rest of the power you asked for ramps up from there. But the initial shock to the system is reduced by this setting, which has obvious benefits. For a heavily loaded bike where you want a smooth startup on throttle, setting this down to 5 (or less!) should be considered.

UPDATE (19 May 2023): Having done some experimentation, with the wider throttle delivered by the End Voltage setting of 42, a Start Current of 2 is my preference. Set to 10, the least throttle I can deliver is about 150w or about 1-1.5a (using an 860C display set to display both values simultaneously). Set Start Current to 5 and that minimum value is about 50w and 0.5a. Set it to 2 and its even less. Plus more importantly it wipes out any stress on the drivetrain from throttle use.

Wrapping it all up…

So there you have it. This is FAR from a comprehensive tutorial on the subject. Remember also that everything done here is done for a BBSHD that is running a 14S/52v power system, so if you are, lets say, running 48v… its possible you may want to jigger some of the assist levels a bit upwards. But now you can do it with a starting point.

Last Note:

The settings above are my personal settings. There is no such thing as a perfect set of settings for everyone. Use what you see here as a guide to your own experimentation.

and Remember… Take pictures of your settings before you make any changes!

A Basic (e?)Bike Tool Kit

Rather than looking at the ideal kit, whats the basic everyman version?

Lets Not Get Carried Away Here…

In my previous post, I laid out my idea of an ideal tool kit for my current daily driver/commuter/shopper/cargo bike. That sucker is one big bike, and given its nature, I can carry along a lot of crap with me (like a chair!) without really noticing. I thought maybe it might be a nice idea to toss out a short post supplementing that one, showing what I carry along on a much more normal sized ebike.

There is also a 2022 update that affects what you see below.

So, without further ado, lets see all the stuff:

The Patch Kit

As I noted in the other post, I am using kits I made myself of bulk patches and bigger vulcanizing fluid tubes. I save a little money, can carry more patches in the same space and get a little better container. If you just want to cover this base and aren’t into buying patches 100 at a time, the Rema Large Touring Kit has been on the market for decades, largely unchanged, for a reason (since I was a kid riding in the 1970’s, they improved the sandpaper. Thats the only change). It will suit you just fine.

Rema Large Touring patch kit: The gold standard. Throw away the instructions

The Tire Levers

No discussion of alternatives this time. These Park 6.2 levers are sturdy and thin, so they fit more readily in a small kit. Over time as I mentioned in my other article, I have tried many different levers and settled on these. They’re worth the extra money.

Very thin plastic coating, metal core with smooth exposed metal edges… The best lever I have found, on balance.

A Tire Patch

If you encounter something that puts a major slit in your tire, you need some way to limp home. The Park Tire Boot is basically just a great big gooey glue patch and probably the best overall solution to this. Another one is to pull a dollar bill out of your wallet and line the tire under the slit with it. Still another: Wrap duct tape around the outside of the tire and rim and suffer thru the thumpThumpThump on the ride home (I have done this and it really works). But a tire boot is the cleanest solution and may even be a permanent fix if the tire is not too badly damaged.

A Tire boot is different from duct tape in that the goo on the patch will really stick – forever – on the flexible corded tire surface.

Small Pliers

At minimum, small needlenose pliers. Why? To pull out a bit of stuck metal or glass from your tire. If space permits in your bag, bump that up to a small multitool with a pliers attachment so you can count in a knife, screwdriver etc.

Pocket Knife

If you bumped up to a multi-tool above, you already covered this base.

Stubby Hex Wrenches

I used the long version of the Bondhus hex wrench set in my big kit. But usually I use this shortie version of the same wrench set. If I was REALLY trying to save weight I would pull out all the wrench sizes I don’t use, but you never know when you could use an extra little pry bar or brace ;-D

Short Adjustable Wrench

If you have a hub motor, then you need one of these to remove your wheel IF NECESSARY. While a big wrench is always easier to use as a lever, you should be able to use a small 6″ wrench almost as effectively. Make sure you need one of these for wheel bolts before you bring it along.

Its not big. But its big enough. Check to be sure it will operate in the available space on the frame – in your garage before you need it.

c02 Inflator and cartridges

This is something you will keep in a separate bag of some kind. It is your backup inflation method – that will be your primary in some cases where you need to blast in a lot of air fast to get a tire back up to pressure so the sealant inside can do its job. Usually that means blast in a cartridge, jump on the bike and ride a half block and pray the hole has sealed. If it does, use the pump to get it back up to a rideable volume. I haven’t discussed co2 before so this is what I used:

C02 inflator

There are many out there. I have settled on the Lezyne inflator and have half a dozen of them. You can save a buck or three on something different, but this model has a regulator that doesn’t stick out so it can get bent in your bag. Its reliable over time and multiple uses. Its just a clean, reliable example of the species.

Super small and reliable. Best of breed.

co2 Cartridges

Bring as many as you can figure out how to carry. Especially if you have a fat bike. I use this brand and size (25g) of co2 cartridge… but the price they want for 9 is about what I paid for a pack of 30 of the things. Prices have gone way up on these bulk cartridges in the year or two since I bought them. Shop around and you can get a better price, but not a lot better. For tires that are not fat tires, you can get away with 20g cartridges.

Pump

Here again you have multiple choices. If you have a road bike you will want a high-pressure pump. If you have a mountain bike you will want one slanted towards high volume. While I generally like the Lezyne line of portable pumps, I have one of these and its a great alternative. The T handle in particular is worth a lot when it comes to delivering a hundred pump strokes, but also the screw-on chuck and the floor-mounting ability make it a standout. Typically a pump is either in a separate bag or strapped into a mount on one of your water bottle cages. This pump does have a cage mount included.

A Bag to hold all this Crap

I use an under-seat bag, personally. The one I decided I liked that holds all my stuff is a 1.5L bag found here on EBay that you can also find on AliExpress, so long as you are willing to take the usual risks associated with buying direct from a Chinese vendor (I did).

I have 4 or 5 of these bags. Cheap, roomy, well-made and they stay put.

There are many other alternatives. This one looks promising. I like velcro as it stays put where adjustable-length snap buckles tend to slip.

Chances are pretty good a bag like this will be large enough to handle more than the tool kit, like your keys for sure and maybe your wallet as well (or a couple-three co2 cartridges!).

The End

I think. We’ll see if people come up with more questions on this subject on the FB groups where posts like this one are used to provide more in-depth answers.

Exit mobile version
%%footer%%