Dual Motor AWD Electric Bikes (the good and bad)

I like to build top-quality-component ebikes from the frame up. Quite a few of them are dual motor or AWD or 2WD or whatever you want to call them. Why would you build an AWD ebike?

AWD Ebikes Menu
AWD. OMG. WTF! (you are here)
Case Study – Flatland Fat Bike Commuter. Hub+Hub
Case Study – Alpine Road & Trail. Hub+Mid Drive
Case Study – Low-Power Cargo Beast. Hub+Mid Drive

In the Beginning…

Well, I could spell ‘ebike’ and that was about it. I had a solid background as a lifelong cyclist, but I went over to the Dark Side and started riding ebikes. I had been working on my own bikes for most of my life and I was pretty good at that part.

So, as an experienced cyclist but a newbie ebike owner I came across a bike built by my (now) friend Houshmand Moarefi, who is the head honcho over at Ebikes USA in Denver. He took the same model of rear-hub-motor ebike I had, upgraded the rear motor, then added a front motor, controller and surrounding bits to make a badass AWD e-fatbike. He posted his creation on the Interwebs.

Figure 1: Houshmand Moarefi’s 2wd Sondors Original. Want to know what dual-motor is good for on an ebike? Just look here. He still rides this bike and you can see it on display at Ebikes USA in Denver.

After seeing the bike online – and peppering Houshmand with questions – I did what everyone on the internet does: shamelessly copied his idea. It is pictured in Figure 2 below. This was taken the night I completed it, moments before I opened that garage door and took my first ride.

Figure 2: AWD by Matt… Version 1.0000. a.k.a. The Colonel (“Colonel Sondors”). How much did I have to learn about doing AWD right? I’ll have to make a list.

Its a good thing I took the picture, as 15 minutes later I broke it. I got it fixed and it gave me years of service, but thats another story entirely. Suffice it to say in that pictured moment, we see triumph and despair occurring almost simultaneously.

What are we in for, building one of these things?

First… “Whhyyy?”

Why put two motors on an ebike? Well… “because we can” works. But lets do better than that.

Is it even possible?

Not so long ago, internet experts in the DIY ebike crafting community would tell you all about how a powered awd ebike could not even function in the first place.

  1. The powered wheels would fight for supremacy between each other.
  2. It is essential to match the power to both wheels but impossible to do so.
  3. Even slight differences in wheel circumference between the two would make terrible things happen.
  4. blah blah blah

So, I was being told it could not be done after having put thousands of successful miles on a bike that could not exist. A lesson on the value of internet experts. Only value the advice of those who have done the work and actually know things.

I don’t want to get too deep into a litany of refutation on common mistakes, but I do want to clear up a couple that come up the most often. All three, really, are more or less re-statements of the same misconception:

Matching Power (current) to the Wheels

This is a common worry, but not a real one as you will discover moments into your first ride. The concern is dissimilar power levels cause problems. They don’t. Tailoring power front to back as conditions change is a major benefit to AWD. In simple clean/dry conditions, all that will happen is the wheel that gets less power doesn’t work as hard.

The easiest way to understand how this is: Geared hubs freewheel forward. So the same thing happens if you have no motor on the back and you are, say, going down a hill with a front motor. The watt output of the front motor decreases as gravity ‘powers’ the speed increase (or you pedal your little heart out on flat ground). Likewise, differences in circumference are a non issue. This is true in bikes with slightly different tire sizes, but is most visibly proven with the in-service bike pictured below.

Figure 3: Different types of motors with perpetually different outputs… and totally different wheel sizes. It still works great.
Contention

Here again, one ride will lay this concern to rest. Two motors will not fight for supremacy with each other despite differing power levels. Partly because of the geared hub’s ability to freewheel. You should take it for granted you will have different power levels on each axle. I commonly keep low power on my front wheel (I will expand on why further on) but for my hub+hub commuter I often just go full blast on each motor and pedal up over top of it. In that instance, with two big motors giving it their all I only very rarely feel a bit of a shift in pull vs. push and it is very minor. Another technique on that bike: 5 levels of PAS on the rear wheel plus 5 on the front means that – in good conditions where I do not vary the power for safety – I have PAS with 5+5=10 levels. As I want more I ratchet up the rear a notch, then the front, then the rear and so on never giving all PAS power to just one wheel.

One Throttle/Two Motors

You don’t want this. You can have it but you are selling yourself and the platform short if you go to the extra amount of trouble to make it happen. I will get into some real world specifics of why this is later on. The short version is if you unify the throttles or even work harder to unify PAS power levels to the two wheels you will be introducing problems with traction and control. You want to keep your control granular. It won’t be confusing or difficult!

What About Two Direct Drive Hubs With Regen?

What I said above doesn’t apply. If you expect to use regen on a twin-DD-hub AWD bike then you are talking about a whole different animal in terms of two hub motors coexisting. I know its been done, but I have never done it personally. I will let some other pioneer on the trail take the arrows in the back on that one (I suspect: regen can be used on the rear but not on the front… or just don’t do regen at all with DD hubs).

A final point: Years into having AWD bikes in service, there are now numerous commercially-produced examples in plain sight. The arguments that it cannot be done have melted away now that so many have obviously done it.

Figure 4: The Purple Thing. Built after the death of The Colonel (cracked frame not related to AWD)

So YES you can do AWD. The question is are you doing it right? Well, thats a whole ‘nother thing.

Whats the Up Side?

Take a look at Figure 1 for the most obvious example: All Wheel Drive on a bicycle is every bit as good of an idea on a bike for the reasons it is a good idea on a car, truck or ATV. On other vehicles, putting more power to your back wheels is not as good of a solution as putting power down to all wheels. It is the same on a bicycle, but so few have done it, the result is not the obvious no-brainer it is on other platforms.

If conditions are sub-optimal, as in rain, snow, mud, riverbed rocks, hillsides and whatnot… AWD on a bike gets you through it easier, across the board. If conditions are ridiculously bad, AWD can get you thru things you thought were impossible to ride. Oftentimes so easily you stop, look back and wonder how the hell you just did that.

The range of things you can ride through just got a lot wider.

If on the other hand conditions are just dandy – say, a smooth, flat, dry paved street – having both wheels deliver power to the ground is again an improvement for all the same reasons it is better on an exotic sports car. Powered traction is delivered to the ground across twice as much rubber. Everything just works better.

And since the improvement makes for a qualitative, but drama-free result, its really hard to describe other than to say ‘everything just works better” or “this feels wonderful, like how it was meant to be” … which do not help much when explaining AWD to skeptics. Nonetheless… the nebulous, big-brush-stroke description is accurate.

In terms of acceleration, doing it with AWD vs. RWD is a very different rider experience. You aren’t being pinned to your seat, nor is your body wanting to slide off the back while you hold onto the handlebars for dear life. Instead you get an amazing rate of acceleration, but it is smooth and – again – without drama. The feeling is its effortless for the bike to do what it is doing.

Mechanically there are benefits as well. If you are keeping tabs on the amount of heat your motor generates, you’ll find gunning one motor around will get so hot you may not be able to touch it for awhile. Not so good, especially with nylon gears inside. But: Run two geared hub motors as a team to achieve the same performance and by some miracle the two don’t even get a fraction as hot as did the one. All of a sudden a motor that was working itself to death isn’t even breaking a sweat, and you’re going at least as fast and as hard.

How is this possible? In May of 2020 Grin Technologies did a detailed technical analysis of multi-motor ebikes. They explain how this is possible, complete with the technical details on why it happens. Its well worth a watch if you are interested in taking a deep technical dive on your AWD ebike options. I have queue’d up the video in the link below to the exact spot where he explains the heat reduction.

Another issue not generally considered is redundancy. With two motors, if something bad happens on your ride and you lose a motor, you still have another and can limp home on it. I learned this the hard way once when I went over the handlebars on my twin-hub Great Pumpkin. I smashed one of the throttles and disabled the rear motor completely. I managed to roll home on the front motor without needing to pedal. With freshly cracked ribs that was exactly what I needed.

Whats the Down Side?

AWD is not all sunshine and roses. There are down sides. Most of them only affect the bike builder. But a few do affect the rider, so we’ll look at the negatives from both perspectives.

For The Builder…

Put simply, AWD on an ebike is one hell of a lot more work. There is so much more you have to keep track of. So many more wires that have to be hidden.

Fig. 5: Custom brake cutoff splitters and extensions for sending signals to 2 controllers

You have to address the issue of brake cutoffs going to two separate motors simultaneously. Pedal-assist to two motors at once is a beautiful thing. But only for the person riding the bike. For the builder it typically means customized controller settings and maybe even a little fabrication to get a sensor signal to two motors at once.

Fig. 6: PAS splitter cable (one sensor –> 2 controllers)

Battery power? You’re going to need a big battery, and it needs to deliver more power than pretty much any regular ebike battery available on the open market. So you either have a single custom pack made or kludge together off-the-shelf packs and suffer through the weight and space issues that go with them.

Fig. 7: Cutout sized, marked and photo sent to the battery builder. All thats left is to drain my bank account.

What does a front motor need in terms of structural support? You’d better think that one through. NEVER use a suspension fork in an AWD build. Your motor can literally pull the thing apart. Whoever designed a bicycle fork never expected a powerful motor would be pulling on it for extended periods, or in sudden jerks. Thats tough on a chromoly fork but they can handle it. Its typically too much for an alloy fork (aluminum is nice and light but doesn’t bend: it breaks) and it is definitely too much for a suspension fork that has 2-piece blades that can be literally pulled apart.

Not to mention fork dropouts. A hub motor must have torque arms attached that prevent the motor from ‘spinning out’ (That is how I broke the Colonel on its maiden voyage; destroying its fork dropouts). You generally cannot use quality torque arms on a suspension fork due to its physical construction. If so, the dropouts have to endure 100% of the punishment and… newsflash … they may survive today but they won’t have the kind of long life they would have had without a motor axle trying to tear thru them.. Internet discussion groups are chock full of pictures of DIY builds where someone used a front hub motor and their suspension fork’s dropouts snapped clean apart. Even with a torque arm.

We’re not done with the front fork yet. Regardless of construction, that pulling on it can loosen your headset at an alarmingly fast rate depending on your power and acceleration levels. If its a problem you have, you will want to think of ways to keep that headset in place (psssst… use two star nuts) and while you are at it, make sure you use a superduty headset with steel races. And a serious mtb stem that clamps the crap out of your steering tube.

You can google “broken ebike fork” or just follow this link (one of many) on Endless Sphere to see more electric motor + fork carnage.

So… How do you get away with using a front suspension fork, then? You see people do it with front-motor bikes. Assuming they thought the job through and are not just future emergency-room visitors, its simple: use a very low power motor. Or neuter a powerful motor and trust the buyer won’t know any better because hey… nobody has any actual experience with these things so you can give them just a little power and they will still be thrilled.

So… to build or sell an AWD bike its a whole lot of work for the same result (a single finished bike). Its no wonder AWD bikes are not common, and when they are up for sale, the seller wants a high price. Assuming they did their job right (never assume), a lot of work went into that bike.

Fig. 8: Wires everywhere. I have to figure out a way to hide all this…

For The Rider…

Fortunately, the downsides of AWD are minimal if all you have to do is ride the bike. But they do exist. All of the negatives can be eliminated if you just realize this bike is a new kind of animal and take it easy when starting out. So… learn how to handle the increased traction, power, and the subtly different behavior.

Dual Throttle

If your bike builder did the job right (I’ve said that two times so far and not by accident), you have two throttles – one for each thumb – to let you apply power granularly to each motor as the needs of the moment come up. Thats a new feature you will need a bit of time to learn how to take best advantage of. The basics of this will be learned by the time you have traveled about one city block. The finer points will take some experience – not a lot – to figure out.

  1. Holding down the front throttle in a turn has the end result of elongating your turn radius (this is about how you naturally ride, not how the bike handles… but it still happens). You cannot take a turn as sharply if applying front throttle, and could wind up smashing into the center median in a right turn in traffic, or the curb in a left turn thru an intersection. There is an easy solution: stop pedaling, release front throttle, turn in, re-engage front throttle just at turn-in so the slight delay will engage the motor right about at the moment of corner exit. Leave rear throttle engaged throughout the turn if you can safely get away with it). That turn procedure all takes place in the space of about two seconds. It will become second nature in short order. But it has to be learned. Now… thats how you hot rod your way thru a turn. You won’t want to do that all the time, and mostly you will go thru a turn no differently than you do on any ebike.
  2. On singletrack/trails, less power to the front wheel is more. Rip down a trail, hit a root and the front wheel bounces up. If it comes down pointed in a different direction than you are headed, your now-powered front wheel will shoot off in that new direction if its going full blast. Keep front motor pedal assist power low – much lower than what you have set for the rear. Then when the inevitable happens its easy to deal with. I’ve found pedal assist dialed down in the 200-250w range is best. If you decide you want more front wheel power at any point, a dab of throttle will do ya. You know you are overdoing it if you get any level of wheel spin in the front.
  3. You are no longer the slowest thing accelerating from a stop at an intersection. So if you are not the first vehicle in the left turn lane, Your instinctive use of full throttles to both motors will rocket you right into the rear bumper of the car in front of you. This is an easy fix. In a left-turn-lane situation, initially use only rear throttle, then add the front when the car in front of you starts to pick up speed. Dial it back again as that car completes their turn and lifts on their own throttle before straightening out. Or you can just hit the front throttle for a split second to get yourself rolling from a stop, then drop it and let PAS manage the rest.

Clearly from these examples, manual AWD acceleration (separate from pedal assist) is a learning process. A dual throttle is a big part of getting this down pat without needing to dumb down the bike’s performance.

You can run an AWD bike with a single shared throttle, but doing so means you will be lifting more frequently and when you do its all-on or all-off. You will lose the ability to decide for yourself what happens. The result is more jerky and less refined.

Battery

If your bike builder did the job right (there it is again), its got a single big battery with a high capacity Battery Management System (BMS) capable of handling the peak and continuous loads of both motors running together. For the rider who has such a setup, the only thing necessary is to set aside enough quality time on a charger to get this bike up to snuff to carry the day’s ride.

Fig. 9: The Purple Thing was … Gen 1.5. Rear motor battery in triangle, front motor battery in the rear rack pack. Front controller in the handlebar bag. Rear controller is in open air under the seat on the rack stays (best for cooling).

For the rider not lucky enough to get a proper battery, that means – at the least – putting up with dual batteries in positions that reduce carry capacity. The rear rack typically gets the duty for one battery in a dual-pack system, so whatever your rack’s capacity was, take off 10 lbs and only use the sides. You may also have to deal with charging the two batteries separately, which is a big drag on convenience and turnaround. You *will* have days where you forget to go and switch the charger to the other battery. Speaking personally: Been there, done that.

Fig. 10: One of my Gen 1.0 iterations with the front motor battery in the bag under the handlebars. Don’t ever do this (but the dual kickstand worked *great*).
Maintenance

Two motors = two sets of service intervals. In practice this should not be a big deal, but fair is fair – we have to count this as double the effort on motor maintenance. This is the part where the direct drive hub people all jump up and remind you for the 100th time their hubs need no maintenance. You will also get slightly increased wear on the front tire, now that its powered.

Commercial Feasibility

I’ve made it pretty clear what I think a proper feature set is for these sorts of bikes, based on the fact I started doing it a while ago, and I’ve had the opportunity to work thru a variety of designs and iterations to find out what works best.

  • Dual throttle
  • Single hi-current battery low and centered
  • Redundant, dual controllers and displays
  • NO front suspension
  • Shared signals from sensors

All you have to do is look at what is out there commercially to see none of them do this. When I look, I see the sort of features – and mistakes – from when I first started kludging AWD bikes together. The reality is, from a commercial perspective we are unlikely to make much headway forward in the near term. Why?

Money… thats why. What I describe is maximum-cost given its redundancy. Its also darned expensive to build an XL battery with a high capacity BMS, and in addition to that, there is the issue of minimum order quantities from component/battery manufacturers. I don’t see a proper AWD bike coming from a commercial vendor unless one goes on a mission to sell a great bike and not take such a high profit margin.

More likely to happen: Development of a suspension fork strong enough to withstand the pull of a front motor over the long haul. It remains to be seen if ANY of those in use now on commercial AWD bikes is going to last. We’ll have to see if product liability issues (and injuries) ensue from whats in use now, or whether the sellers have de-tuned the front motors sufficiently to let those forks survive. But down the road, this is definitely something that could successfully evolve.

Something that came on stage right about the time I published this article is the Eunorau Defender-S on Indiegogo. That is a full-suspension bike, so there’s the front-suspension concern. Given its late-2021 delivery date (plenty of time to figure stuff out), the fact this vendor is going nowhere near any obviously phony claims, and reliable people who know the company are giving it a serious look, this AWD bike may be something of a landmark for the species both in price and thoughtful use of components.

I would be remiss if I did not mention the AWD motorcycles, bikes and ebikes developed by Christini, where they have created a unique, robust, mature – and patented – system to share the power from one motor (rider or electric) to two wheels via mechanical linkage. Lets say that a different way so its clear what they have accomplished: They tap into the power of a single motor (either the rider or a BBSHD) and use that to successfully, reliably power two wheels. Its pretty neat stuff.

What does all this mean for the DIY ebiker? Well, the tools and components are out there for you to build your own, and do it considerably better or less expensively (or both) than anything available in the commercial marketplace.

Fat chance you’ll see a tree-climber like this in stores near you anytime soon.

Wrapping It All Up

The best way to see what good can come from an AWD bike is to look at some representative examples. I have chosen three that work very well for me, and do so in very different ways. Because we’ve gotten to a good place to pause with this post, I’ll do so and point you to the individual case studies that should be linked together in the menu up top.

Author: m@Robertson

I'm responsible for the day-to-day operations at my place of business: Leland-West Insurance Brokers, Inc. We do classic and exotic car insurance all across these United States. I'm also an avid auto enthusiast, a born again cyclist (i.e. an ebiker) and participate in medium and long range CMP and NRA sanctioned rifle competitions.

7 thoughts on “Dual Motor AWD Electric Bikes (the good and bad)”

  1. Awesome article! Wondering what your thoughts are on the n+ Mercedes championship edition dual motor ebike? It seems to potentially have all the flaws you describe.

    1. m@Robertson – Pacific Grove, CA – I'm responsible for the day-to-day operations at my place of business: Leland-West Insurance Brokers, Inc. We do classic and exotic car insurance all across these United States. I'm also an avid auto enthusiast, a born again cyclist (i.e. an ebiker) and participate in medium and long range CMP and NRA sanctioned rifle competitions.
      m@Robertson says:

      The web site for that bike is an object lesson in buying carefully. Look closely and all the pics of the bike are renders. Have you ever seen a hub motor that allows radial lacing on the spokes? And a thru axle (except for the Grin All Axle motor)? Scroll down to the reviews and someone posted a picture of a real one. Looks like two direct-drive motors, which means a relatively low roll-on of power inherent to that type of motor. Also the 130Nm of torque is not necessarily 65Nm to each wheel. It could be loaded more heavily on the back, which will help that suspension fork survive. More likely, they are using a reinforced fork and the inherently gentler nature of a direct drive motor keeps the Bad Things from happening. Considering it is coming from Mercedes Benz I am sure their product liability people made sure at least the thing is safe. Also note it has a 36v battery so not a powerhouse.

  2. “A lesson on the value of internet experts.”
    Reminds me of many moons ago, when digital cameras were new, on photo forums, I predicted camera makers would come out with interchangeable lenses designed for the smaller-than-35 mm sensors. Such lenses could be smaller, more efficient, and cheaper than the traditional “full frame” designs. I was shouted down for such heresy. Nikon, Canon etc. would never invest in such a silly idea…

Leave a Reply to Douglas WuCancel reply

Discover more from Tales On Two Wheels

Subscribe now to keep reading and get access to the full archive.

Continue reading

Exit mobile version
%%footer%%