Larry Vs. Harry Bullitt – Rear (BBSHD) Motor and Drivetrain

The Bullitt Build
1. Battery and Battery Box
2. Cargo Box
3. Brakes
4. Front Motor & Wheel
5. Rear Motor & Drivetrain (You Are Here)
6. Bits & Pieces

The Mid Drive

Godzilla is a 2wd/AWD ebike, with a Bafang geared hub motor in the front, set up as a helper to the Bafang BBSHD mid drive powering the back wheel. This is not the first AWD ebike I have built and we’re now beyond what I call my Gen3 configuration. I don’t call it Gen4 as it is still effectively Gen3, and incorporates all of the lessons I learned (and mistakes I did not repeat). Its different in that the two motors blend together in a kinder, gentler fashion I am calling Drama Free AWD.

Fitment to a late model Bullitt

Lets not sugarcoat this: The BBSHD does not fit a Bullitt. BUT… its pretty easy to rectify that. Thankfully there is very little needed to make it fit.

You will figure out for yourself what the problem is real fast. Just try and slide the motor axle into the bottom bracket. Oof… one of the threaded ‘ears’ that holds the bottom bracket clamp overlaps the frame. There are three ways to fix this. I will warn you right now: If you try Method #3 you will be brought up on charges and imprisoned.

Method 1: File down the ear a little

Thats all there is to it. The ear is quite a substantial piece of alloy sticking out of the motor casing. Just file enough of the corner off so it clears the frame. Do a little at a time with a hand file. File a bit, check to see if it clears. File some more. Check again. Repeat until it fits thru. Do this right and the motor will clear the frame and there will still be plenty of material left so there is no concern of any kind as to the structural soundness of that ear.

Figure 1 – Red arrows: Thats it? Thats it! (ignore the heat sinks. We’ll cover them later).

Looking at the picture above, its kind of hard to see exactly where I filed it, because I took a black Sharpie to the freshly exposed alloy and just blacked it out. A few months later, its worn off a touch but you still need to know where the work was done to be able to see it at all.

Method 2: Partially disassemble the motor

This method is for the Felix Ungers of the world. If you cannot bear to take a file to the motor casing… take it apart, then position it and reassemble the motor in situ. There are only a few screws involved to make this happen… but Jesus H. Christ this is waaaay more effort than it is worth in my own personal view. If you ever want to pull the motor off you have to take the damn thing apart again to get it off the frame. For me… give me the file and 5 minutes for Method 1 and I’m good.

Even so, if someone goes this route I can understand and respect the insane attention to detail such a course exemplifies. HOWEVER…

Method 3: Take a file to the frame

Yes really. I’ve seen it done. Rather than filing off metal on the motor, some folks decide they want to file down the frame instead. The thing that is in the way on the Bullitt frame is a weld seam, and I suppose that structurally, the stuff in the way is not critical to the frame’s structural integrity. But… as far as I am concerned a bicycle frame is a sacred temple and anyone who violates the sanctity of that temple… well they should be taken out and shot. Don’t do that.

How Well Does It Fit?

Once you get the motor fit into the bottom bracket, Its a great fit for the frame. One of the Lekkie (42-52T) or Luna Eclipse 42 or 48T chainrings will give you great chain line. The motor does hang almost straight down, and this looks a bit disconcerting, but the reality is you have other things on the Bullitt that hang lower. The motor is not in any way a hindrance to ground clearance unless you decide to start rolling up and/or off of curbs and such. I have never hit anything and I have never heard of anyone on a Bullitt having such a problem.

Crankarms

In your typical BBSHD or BBS02 installation, the secondary gear housing – just behind the chainring – is present where, on an ordinary bicycle, nothing exists. Consequently the chainring is pushed perhaps as much as 2cm outboard from where it would be. To counteract this, its common to use special chainrings that offset themselves inward to undo what would otherwise be a disastrous chain line. That fixes the chain line, but it does nothing for the alignment of the pedals underneath the rider.

If you move the chainring mounting 2cm out that means – even if you undo the misaligned chainring – your pedals are also 2cm outboard from where they would be only on the right hand side. Yeah thats right. Your pedals are not centered underneath you.

On many builds, this is dealt with by using crankarms that have a left arm that is offset outward. Typically by 18mm (like I said… “about” 2 cm). That centers your pedals underneath you. Thats the good news. The bad news is you can either use the Bafang stock crankarms – which are cast alloy and not particularly robust – or you buy quality forged crankarms – typically from Lekkie who pretty much owns the aftermarket for strong, high quality Bafang-compatible crankarms. So you get either very cheap kaka crankarms that may or may not survive a proper pedelec rider honking on them, or you spend a bundle (and get top quality stuff).

Figure 2 – Note the secondary gear housing tucked in behind the chainring on the left.

So, Forget Everything I Just Said

The Bullitt is one of the very rare frames that does not need any of this offset crankarm business. You will buy a Bafang BBSHD whose axle is compatible with a 68-73mm bottom bracket. Install that and there is enough axle sticking out the non drive side that there is no need to do anything further. Not only is there no need… you don’t want offset arms since the goal is to center the pedals underneath you. Straight arms with minimal Quack Factor will do that.

I used forged 175mm Shimano FC-E6000 crankarms meant for use with a Shimano Steps drive. They got quite a bit more expensive before the Pandemic ratcheted everything up. I paid less for both arms than you are going to pay for just one of them. In fact they are only sold individually these days it seems. Here is the right 175mm arm and here is the left 175mm arm. If 170mm is more your bag, I know they are made because here is a 170mm left arm. I can’t find a right one. Maybe you can if you want the shorter arms.

Still, the good news is you can use straight crankarms from any vendor… so long as they are square-taper (don’t shoot the messenger on the square taper part).

The Wire Tunnel

I have seen numerous BBSHD’d Bullitts where the wiring from the motor is run forward underneath the main … girder … or whatever that part of the frame is called, and then run up once it splits into the deck support. I don’t like this because it creates visible wiring. Also, wires directly under the bike are potentially subject to ground impacts. A risk I’d prefer to avoid.

Figure 3 – the wire tunnel. Note the velcro wrapping at the point the wire bundle enters the tube. This snugs it to the inside diameter of the tube.

I looped the wires up and over the drive side. The secondary housing naturally protects and hides them. The wires then cross over the top of that girder, hidden by the wire tunnel. My original idea was to use a bit of green or black furniture-grade PVC. However, early on in the build process I stumbled across ‘Duck’ Brand neon green duct tape. This is commonly found in hardware stores in the USA. Its a hobby-grade household product and not construction-site worthy, but its fine for this job.

By some miracle the Neon Lime Green color is nearly an identical match to the LarryVsHarry Lizzard King paint. You literally have to be looking at it just right to see any difference between the two. It was perfect to cover the dark green PVC pipe used for the wire tunnel. I did use two very large dark green zip ties to hold it in place. These were the closest color match I could find and, while they are not ideal, I have yet to find a better solution (including taping the thing onto the girder with the matching tape. I tried it and it looked awful).

Figure 4 – The wires look a lot more visible here than in person. Wires include both front and rear motor wiring as well as the battery charge plug (green cap).

The inside edges of the plastic PVC pipe are not what I would call ‘sharp’, but they are edged and a little more unforgiving than I would like when rubbing every day on flexible, soft wire casing. I beveled/chamfered the inside and outside edges using a quick pass with a pipe reamer. Problem solved before it becomes a problem.

As it stands, the wire tunnel protects the wires coming out of the motor that have to be run forward and up the steering tube, where they rise to the handlebars. You don’t even see any wires now the Fahrer bags are installed.

Figure 5 – With the Fahrer bags in place, what little visible electrical wiring that exists … disappears

Heat Sinks

Godzilla presently lives and works in Fresno California USA. Whats the weather like there, Ollie?

And once it starts getting hot, it stays hot…

When faced with this, you have to take steps on a variety of fronts to at least mitigate the issues that come up. Insofar as the BBSHD is concerned, I have already covered this subject in a fair amount of detail in a separate article that predates the Bullitt build and, yes I pretty much covered the motor in heat sinks just as you see in that article.

Since the crankarms are not offset on this bike, I was not able to use an endcap, but as shown in the linked article above I covered every bit of the motor I could with the things, using both the silver center sinks and the little black squares around the edges.

BBSHD Settings

The settings for the BBSHD are another subject already covered in detail. First in this article that introduces my approach to the subject, and following on with this one that covers some very minor refinements.

To jump specifically to what I am doing on Godzilla, you want to jump straight to Version 2 and look at the right-side image.

Here are the three screens below, but all the explanation for what they mean is in the linked articles above.

Figure 6 – The BBSHD settings used on Godzilla

Drivetrain

If we’re discussing the mid drive, we have to at least touch on the rest of the drivetrain, which is integral to making the bike go places.

SRAM GX 11-speed shifter

I prefer SRAM shifters because the way they mount onto the handlebars, they take up much less real estate than their Shimano or Microshift counterparts.

SRAM GX long cage rear derailleur

SRAM derailleurs in general, once adjusted properly, seem to stay that way. There’s not much to say about this derailleur other than it just works, precisely, smoothly and reliably, does a great job wrapping chain and has no issues with the 42T big cluster I have on the back. I don’t use its clutch feature. It is able to handle a 46T rear cluster just fine, although I don’t have one on Godzilla. I do have one on another bike set up that way with the same drivetrain bits.

Figure 7 – The long cage SRAM GX is sweet!

KMC e11 chain (mid drive-specific)

When I build a mid drive bike I use a mid-drive specific chain. That is I think part of the reason why, in all of the thousands of miles I have been riding powerful mid drive builds, I have never once broken a chain. Unfortunately the e11 is frightfully expensive. Bide your time, keep your eyes open for deals anywhere in the world (particularly in the EU) and you can find an online deal.

Sunrace CSMS7 cluster: 11-42T

For all mid drive bikes I build, I prefer steel, welded clusters that are 1-piece. Such a thing is not really available in the 11s world, but the Sunrace CSMS7 is as close as it gets. It uses steel spiders and high tensile steel cogs, which is what you want for durability with a mid drive.

Figure 8 – The Sunrace CSMS7 showing off its steel underwear

NOTE: The CSMS7 has turned into a unicorn these days. I have managed to score two NOS in auctions on Ebay. One for use on this Bullitt build, and a second recently as a backup for the inevitable day when one of mine fail (I have another on my Surly Big Fat Dummy’s street wheelset). But thats it, Nobody in traditional bicycle retail has had them in stock for months.

Given global bike supply issues, there is no telling how long it will take to fix this. I have found that a Sunrace CSMX8 appears to be an excellent performer despite its alloy spiders (one is pictured below). I use this on my mountain wheelset on my Surly Big Fat Dummy and so far it has given me no trouble. Its range is 11-46T which has proven to be no issue for the (lower end) SRAM NX derailleur that is on that bike.

Figure 9 – The Sunrace CSMX8: Lighter weight scaffolding under the hood… but still steel cogs.

Rear Wheel

The core of the rear wheel is a DT Swiss 350 Hybrid rear hub. The Hybrid line of DT’s 350 is, compared to the standard 350, beefed up in just about every way. The flanges are beefier, the cassette body is steel, the internal ratchet mechanism is a solid piece rather than being relieved for light weight, and it is a 24T engagement vs the stock 18T, which gives better response while still maintaining the super strong ratchet mechanism that makes this hub almost indestructible when paired with a powerful mid drive.

Figure 10 – The DT 350 Hybrid. The Sherman tank of hubs

The rim is a SunRingle MTX39, which has a 30mm internal width – the ’39’ in ‘MTX39’ comes from its external bead width. The review of this rim over at MTBR described it as “monumentally strong” and “impossible to bend” while noting the penalty for this strength is weight. Since weight is not a factor on a twin-motor cargo bike, I’ll take that strength any day of the week. The rim has proven itself un-dingable both here on Godzilla and on the Mongoose Envoy build I first used them on.

Figure 11 – That deep, triangular, thick-walled structure makes this puppy plenty strong.

The MTX39 is commonly available in both 32H and 36H configurations. So is the DT350 Hybrid. However, at the time of my builds I was never able to find 36H hubs, so both of my builds are 32H… and they are none the worse for this choice. In particular, a Bullitt’s construction does not put anywhere near as much weight squarely over the back wheel as do for example your garden variety mid- or longtail. That makes it easier to live without 36H. 1100 miles so far in a few months and the rear rim is still perfectly true.

In between the rim and the hub are Sapim Strong spokes with brass nipples. Once again I used the expert services of Stoic Wheels to provide cut spokes to my specs.

Front Chainring

Ordinarily, I advise a builder that you have to keep the motor spinning on a mid drive, and a 52T front chainring is way too big. You’ll bog the motor as its trying to lug itself up from a stop. This is the worst thing you can do to a mid drive, and among other things is a great way to snap your chain.

Figure 12 – 52T front Lekkie Bling Ring. As big as they come.

But Godzilla proved to be an exception. The choice of a 52T chainring (in country that is flat as a pancake) was still not initially obvious. As noted in Musical Chainrings, I have a lot of chainrings available from a variety of builds. With any new bike build, I do not expect to get it right on the first try. Unfortunately I came close here (it would have been nice not to buy another one) but in the end, no cigar.

Plan A

At first, I tried a 46T Lekkie ring pulled from the parts pile. The offset was good and planted the chain in a straight line … about four cogs inboard on the rear cluster. So with that 46T ring I was spinning a little too much with good chain line, and the bike was outrunning me. Time for …

Plan B

I switched to a 130 BCD adapter and a 48T chainring. If the 46T with strong offset was too hot. The 48T with minimal offset was too cold. Now I had a big chainring; good on the flats, but with no offset, good chainline was only on the smallest cogs in the rear. That was great once I hit cruise but bogged the motor when starting from a stop… and thats very bad. Lets try …

Plan C

My third try is a Luna Eclipse body with a 48T (proprietary) ring. So, same chainring size as Plan B but with the most offset possible in any BBSHD aftermarket chainring. This felt pretty good. I was running up in a larger rear cog so my chainline was great. That kept the motor from bogging from a standing start.

Figure 13 – Left to Right: Plan B, Plan A and Plan C

But (!) … I was not able to get down into small enough cogs when I was up to cruising speed. The bike was running away from me. The only solution was to let the bike run at slow speeds as it peaked with usable cadence and effort at about 18 mph. I lived with this for awhile – and it was ok (just ok) – until I decided to finally buy a chainring in a bid to have my cake and eat it too.

So now its come to Plan D

A 52T Lekkie chainring that has the same goodly offset as was found with Plan A. I would be biasing my chainline into the upper half of my cluster. But not so much that I would be unable to comfortably use the smallest cog (as was the case with Plan C). I figured the increased tooth count would cause me to run one gear up the cluster from where I was running with Plan C, and slow my cadence enough at that bigger rear cog to still run the bike faster, while at the same time keeping a straight-ish chainline, preserve my ability to gear down to bigger cogs and up to smaller ones.

And this time, finally, I was out of parts and had to buy the thing, using my usual source for Lekkie rings here in the USA. Ouch that one smarted a bit.

My gear calculations were done on the Speed at Cadence screen at bikecalc.com. Its an invaluable resource for the thoughtful builder working out the right gears for a build.

But the money was worth it as it completed the bike. Plan D worked perfectly. This is, as far as I can see, the only time a 52T chainring works well on a mid drive build. Worth noting is the fact that this bike lives on table-flat ground, and if there were hills in its way, I would have likely had to go with a 42T front Lekkie ring.


Thats it for the rear motor and drivetrain. Lets wrap up discussion of this build with

Bits and Pieces

Author: m@Robertson

I'm responsible for the day-to-day operations at my place of business: Leland-West Insurance Brokers, Inc. We do classic and exotic car insurance all across these United States. I'm also an avid auto enthusiast, a born again cyclist (i.e. an ebiker) and participate in medium and long range CMP and NRA sanctioned rifle competitions.

6 thoughts on “Larry Vs. Harry Bullitt – Rear (BBSHD) Motor and Drivetrain”

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s