(e)Bike Tool Kit – The 2022 Edition

In the last few months, I’ve made a few changes to my standard on-bike tool kits. Lets take a look.

Things have changed a little since I originally wrote up my full size tool kit in late 2020, and my minimalist tool kit a couple weeks later. The changes are not big but when you are talking about risking your ride turning into a walk – especially in rough, remote terrain – its worth bringing up the things I have changed.

The Core Kit Items

Unless noted otherwise, the changes here are the same for both my full and minimalist kits. Lets run down the main players on the small kit first, so you don’t have to go and refer to another article to get the complete contents.

The Patch Kit

As I noted in 2020, Rema Tip Top cold-vulcanizing patches have been the gold standard for decades. And that is before I started using them in the 1970’s. They are essentially unchanged today. If you just want to buy what you need, then the Rema Large Touring Kit is the way to go. At present its a whopping US$7.15. However, I do it a little differently. I take an empty Costco pill bottle with its locking lid, and then I add a slew of my own patches, along with a snip of special sandpaper and a much larger tube of cold-vulcanizing goo. This gives me a more capable patch kit in a better, stronger container. It is not the no-brainer that just buying the pre-made kit is, though.

Spare Inner Tube(s)

If you can find the room, carry them. Patching a holey tube should be your first try at a repair, but its entirely possible you will hit something that will effectively destroy the tube. My last flat was exactly this – loaded coming back from the grocery store, at night and in freezing weather. I had everything but a spare tube on hand and, faced with a very large tear, in the end I had to call a friend to go buy a ‘good enough’ tube at the local Wal Mart and bring it to me. Half-measures always end up biting me so I am carrying tubes again.

The Tire Levers

As was true in 2020 so it stays true now: After trying many alternatives, the Park TL-6.2 tire levers are the ticket. You can see them rubber-banded to a patch kit bottle above. They’re superior because they are metal, with a sturdy-enough-to-withstand-use plastic coating.

A Tire Patch

The Park TB-2 Tire Boot remains the standard and one is always found in my patch kit just in case. This is just a great big gooey patch meant to be applied to the tire and not the tube. You use one of these if you have some kind of major slit in the tire casing that gives it the tire equivalent of a hernia.

Hex Wrenches

A stubby set made by Bondhus metric wrenches is in most of my kits (some of the bigger ones get a long set). These are made of high quality tool steel and inexpensive. You don’t need a whole set so if you want to shave weight or save space, you can buy these individually or just buy a set and include only what you need. However an extra piece of steel can be a handy pry bar. You never know…

A Pocket Knife

A pocket knife is one of those just-in-case items that has no specific job, but can come in REAL handy in so many ways. A Kershaw Shuffle is a good quality, inexpensive folder that incorporates flat and Phillips screwdriver bits. A.G. Russell’s Featherlite One Hand Knife is lightweight and handy for only about US$35, and their ‘Simple 3″ Lockback‘ is a bit less than half that price. Or how about a Slidewinder for ten bucks? Substitute in a multi tool for greater functionality (I saw a Leatherman Bolster on sale in a local Costco recently for only $39.95), but that is expensive and could make your tool bag a bit crowded.

Needlenose Pliers

I carry these outside my toolkit, usually somewhere I can grab quickly. The idea is if you hear that awful hiss-hiss-hiss sound as your tire rotates around a nail or similar, you stop the bike, jump off, grab the pliers which are in a quick-grab place and pull out the offending nail. Speed counts on this particularly if you have tire sealant like FlatOut waiting to do its job once the nail is removed and you spin the tire.

Its entirely possible the needlenose pliers can be done without depending on how you feel about the first item on my New Stuff list below.

New Stuff

Knipex Wrench/Pliers

7 1/4″ (180mm) size is my favorite for a bike tool pouch, although I also have the two smaller sizes (150mm and 125mm). The 180’s are ideal in my opinion. Small enough to use on a rack bolt, big enough to use on a pedal, or even an axle bolt.

These tools are spoken of in hushed tones by the folks who have been turned onto them, and I’m no exception. Think of them as a kind of super Channel Lock style of pliers, except they are optimized so you have much finer graduations in your ‘channel’ widths, the jaws always stay perfectly parallel and you can really clamp the bejesus out of these things, so much so they can be used like an adjustable, open ended crescent wrench. A 10″ / 250mm set lives permanently in my car and is great for bolting stuff like trailer hitch bits down tight.

This tool takes up the same space as the former adjustable crescent wrench and is more usable since it is a pair of strong pliers as much as it is a wrench.

Be warned, though. The little buggers are freaking expensive. But if you are a tool geek, you’ll love them.

A T25 Torx Wrench

Over time, the T25 Torx wrench has gone from something only Magura used on their brakes to a sort of alternate standard among manufacturers. Particularly when it comes to brake rotor bolts.

My brakes, brake rotors and now my seatpost use a Torx T25.

As much as I hate to admit it, the T25 is a better tool socket than a simple hex. Formerly only kept in my bigger tool kits, Since my Squeezy seatpost clamp also uses a T25 on my Apostate I’m officially carrying one in even my minimalist kits.

Battery Powered Pump

A couple of years ago I began championing the use of a portable air compressor that could be slightly modified to run off your existing ebike battery. I still have 4 or 5 of them, and I have never had one fail. However after reading some success stories, and my own research, I’m ready to say I have found a couple of models that are worth relying on.

About a year ago I started doing remote beach runs where there is no land access for miles along the route. You either climb up the beach cliffs and leave your bike, you go swimming, you turn back or you reach your destination. No one’s coming to get you because nobody is out there and your cell phone doesn’t work. Since my ride to the jumping off point was a few miles of paved shared-use path, followed by a bunch of deep sand and then more pavement home, I found I now needed a pump that could be used routinely and regularly rather than emergency-only. So I started looking at pumps and their reviews.

Out here, running out of juice would REALLY suck.

I found out pretty quick that many pumps advertise long life but when you dig into exactly what battery is inside, you find there’s not much there under the hood. Maybe 800 mah. For a pump that has to inflate two *fat* tires at least once and probably twice during the ride, AND have enough left over in case of emergency, I wanted some serious juice in the battery pack.

I decided to try out the CycPlus A8 pump, which had good reviews and published their battery spec. Not 500 or 800 mAh. 2500 mAh. Thats the biggest I could find in this class of small portable pump. What remained unanswered was whether the pump was reliable and whether or not – like lumens on headlights – the claimed battery capacity was remotely believable.

After a lot of use without any failures, I can say it has proven to be reliable. I literally can’t run the battery down in use on a given bike trip. The same has proven true with its companion model, the cheaper, lighter A7 model that trades the alloy pump casing for plastic.

The A7 is also narrower and longer. When I needed a pump for The Apostate, I wanted it to fit in my handlebar bag. I found I had to go with the A8. The A7 was too long to fit in my chosen handlebar bag. Not the biggest deal in the world. The A8 fits perfectly and the weight on the bars is not noticeable.

A7 on the left, A8 on the right. Comparative sizes are not quite to scale. Pic on the right is a little smaller than in reality compared to the A7.

Hockey Pucks

Most useful if you have a two-legged center-mount kickstand. A couple of regulation hockey pucks underneath your kickstand effectively puts the bike up in the air for service on either wheel. Ridiculously handy. Also if you are parking your fat bike on sand, the enlarged puck under your single kickstand leg can mean the difference between the bike staying up or sinking. Call this an optional item but if you can spare the space one or two pucks can be a huge convenience.

Hockey pucks in place let me easily lube my chain at the park rather than in a dingy old garage.

Gone But Not Forgotten

This is what was once in the toolkit but is now gone/replaced.

Wrenches

The Knipex pliers take the place of the adjustable crescent wrench.

CO2

Now that I have an on-demand air compressor, I can kiss goodbye this ancient, single-use technology. That means no more cartridges stashed everywhere I can find a place to fit another one, and no more cartridge head

A super cool, best-of-breed little part… but good riddance to antiquated, single-use co2 technology

Manual Backup Pump?

I’ve worked with the battery powered pumps listed above enough to oftentimes cut the umbilical cord to my backup hand pumps… but if I can carry one without too much difficulty I will. This is one habit that is very hard to break for someone like me who is so invested in having redundant backups.

Needlenose pliers?

I think the Knipex will also do this job, but my US$9 needlenose pliers are often out in the open in a MOLLE slot outside one of my packs. I don’t know for sure if I want to hang a US$60 set of fancy German workmanship out in the same way. So long as I have the space I’ll keep the needlenose’s on the payroll. But really if we’re being a weight weenie, I can find a way to safely secure the Knipex’ and get rid of the pliers. Or attach a multi-tool to the exterior of a bag perhaps and make my emergency tire pliers handy thataway.


Well thats pretty much it for the tool kit. Not the most exciting topic… until something breaks and you’re sitting on a rock trying to fix it.

Ride on…

How To Build An Ebike From Scratch: Perfecting

We built an ebike. Are we done? Here are the things that typically go a little wrong with a build, and some ways to fix them.

Introduction
Step 1: Planning
Step 2: Hunting
Step 3: Tinkering
Step 4: Buying
Step 5: Build Day 1
Build Day 2
Build Day 3
Step 6: Perfecting (you are here)
Tools List

Preparation is Everything?

In Planning, I opened by saying Preparation is Everything. With that said…

“Everyone has a plan until they get punched in the mouth.” -Iron Mike Tyson

Yeah. Lets talk about the reality check that is coming, once you actually ride the bike you just built. You learn whether what you thought would work actually does. More than likely, something will not work the way you’d like it to.

It won’t be a catastrophic problem, but this is a custom bike and you should expect a do-over or two to make it exactly what you want. This is how I wound up with the materiel and experience to write Musical Chainrings.

On that subject (bicycle gearing), over time that inevitable uncertainty has worked out in my favor. I know I am going to need some time in the saddle to figure out exactly how I want to gear any bike. I may also be surprised when I get a look at actual versus expected chain alignment. Thanks to Tyson’s Law, I have plenty of stock on hand to play around with and get it right.

You have to plan for and budget for this final step. Not necessarily for chainrings. There are a variety of typical culprits.

What Culprits?

There is a pretty common hit parade of things most likely to need a tweak. They all have something to do with the human/bike interface: How comfortable the bike is to you when you ride it.

Handlebars

Is their width comfortable? What about the angle? Your wrists feel OK after awhile? Need a rise on the bars? You’ll only be certain you got it right after riding the bike.

For the Apostate I put on a 760mm titanium flat bar. I have tried to use this very snazzy handlebar on a half-dozen bikes over the last few years, and was never happy with it, so it went back to the parts pile. Having had the Apostate on the road for a few months now, it looks like I finally found a permanent home for it.

My first ride on my Bullitt on February 21st, 2021. Look closely and you can see the same titanium handlebar on this bike; a few weeks later it came right back off. Again.

Handlebar stems

This is surprisingly important for rider comfort, and is perhaps the part I most often change after a new build hits the road. A longer or shorter stem can make a world of difference in comfort depending on what reach to the bars best fits you and your riding position (seat height relative to bar height also plays a role, so once again you need to be on the actual bike to understand what works best). A stem at a different angle can raise or lower the bars for a different improvement than changing the reach with stem length.

SIDEBAR:
No matter what… do not use an adjustable riser stem. The kind that has a hinge you can supposedly bolt down so its safe. I know of two separate instances where they broke loose (thankfully I was not the rider). Both under heavy braking. Want to keep your teeth? Use a fixed stem with a set angle to raise handlebar height.

For the Apostate I tried an 80mm stem with a 6 degree rise. Based on measurements from other bikes, I knew this was likely to work. But once again… you never know until you ride it.

Once I did, my posture naturally gravitated to holding the bars with my thumb and forefinger; not naturally planting my upper body weight on my entire palm. I needed a big change, and so I grabbed the biggest change I had: a much longer 120mm stem with a 45-degree rise. This raised the bars as much as was reasonably possible (about an inch and a half) while not really moving the bars forward much (which would increase my reach and make the problem worse).

I set aside these potential alternatives, just in case. I used the one on the far right.

After riding it for a week, it felt better, but I still had to think to put my hands down flat on the bar. I hadn’t gotten it quite right yet. I needed to reduce reach a bit while not affecting handlebar height.

Since I was pretty much at my best result on the stem length and handlebar height, my next step in fitment moved from the handlebars to the seatpost, where I knew I had a little room to maneuver, so to speak.

Worth noting: I could have stayed at the handlebars and changed the bar to one with a pullback of some kind. But I wanted to keep the bar flat and straight on this bike so…

Seatposts

If you are having reach or posture issues, one of the tools at your disposal is to change your seatpost. Some have a setback, where the saddle is mounted aft of the seatpost tube itself. Others have no setback and the rail clamps are directly over the tube. The difference moves your body forward or backward depending on what type you use.

I try to solve fitment issues with handlebars and stems. Changing seatpost setback is usually a last resort (and if you have a suspension seatpost, changing that expensive part is usually off the table as an option).

For the Apostate, a vintage 350mm Kalloy Uno came with the frame. This venerable post has been on the market for decades. It is a no frills, sturdy option. It turns out a 350mm post, with a bottom set near to matching the frame’s bottom edge (still well within its safety limits) was perfect for my pedal stroke. Winner winner chicken dinner.

Or not. As noted above, after riding it for a week I felt I still needed a small change, and it seemed like it would have to be a seatpost change.

The alternatives left were scooting the seat forward in the seatpost clamp (minding the limits scribed on the saddle), and changing the post to one with no setback. Since I was already at the forward limit of the saddle, that meant a different post with no setback. I did that in an over-the-top way, which moved this modification out of the ordinary and into the Afterword section below. We’ll discuss details there.

My original Kalloy seatpost had a ‘setback’ that moves the seat’s mount back behind the post’s center axis. The post I replaced it with has no setback.

Saddles

You won’t know if it works until you sit on it and ride for awhile. But, you don’t have to start from scratch, either. What you like on another bike is liable to work again. I know that for bikes I pedal hard, I like narrower saddles. I knew I liked the WTB Volt (taken off of my Surly Big Fat Dummy) on my GG Smash enduro bike.

So I put on another Volt (I scored the much nicer Chromoly version on a clearance sale) and its fine. No changes necessary. You may not be so lucky as saddles are notorious for not being quite right without some trial and error.

Pedals

Again… this is about comfort. But budget is a factor as well. I tried going with a more or less period-correct option via some old cage pedals with mtb clips and straps. I had them on a shelf collecting dust, and thought this was a great place to put them back into use.

Wrong answer. Some things are better left to the past. Toe clips are one of them. I only had to fumble getting back into them once (I’m not cleating in here) to remember how annoying that was. Fortunately for my budget I also had a pair of perfectly good, cheap flat pedals on the shelf, which I put on.

And I still wasn’t happy. Again thankfully for my budget, my Smash is stored with its pedals off, and those pedals are Pedaling Innovations Catalysts, which are sort of monsters, but I have several sets. I really like the ability to support my arch, in a mid-foot position that benefits from a stomping pedal stroke.

New bike. Scruffy pedals swiped from another bike. No problem.

So on they went and … perfect. I’ll use the cheapie flat pedals on the Smash. For now.

Chainrings

Finally, I built a bike I did not need to play musical chainrings with to get it geared right. Some of that was luck, some of it experience. The 40T Lekkie I used – which requires a special motor cover to be substituted on to fit – was a big ticket item, but its the smallest chainring available that would give me the offset I needed to get excellent chainline on this build.

Pay no attention to those wires. Cable management was tackled on Assembly Day 3. This picture was taken on Day 2.

That chainline was figured out in the Tinkering phase, when I had only the frame, the motor, a wheel and some of my spare chainrings to play with. Chainline is dead straight back to the middle of the cluster, and the gears I am comfortable riding in on this bike are the middle ones as well. One and done. For once.

So… maybe Planning Really is Everything.


Afterword

The Apostate pictured in my Day 1 ride didn’t stay the same. Most of the changes are documented above. But things don’t always fit into neat little categories. What unique bits did I end up changing or prettying-up?

Battery Mounting

The battery solution on this bike came out great. The frame fits a certain type of ‘in-triangle’ battery pack, and of those packs, the Wolf Pack from Luna Cycle fits as if the frame was made for it.

However, clearances are tight. Particularly on top where it really matters. It was clear even during test fittings I wanted to keep this battery permanently on the frame and remove it as infrequently as possible. Ideally: Never remove it.

Not just because there isn’t much room to work with in terms of getting the thing off of its (super strong) magnetic mount. That strong magnet, versus the rivnut bottle bosses on this vintage frame… worry me. You have to apply so much force to remove the pack (or move it in any way forwards or backwards), I’m concerned something is going to bend (the mount) or break (one of the bosses tearing loose from the frame). There’s likely no coming back from a failure like that on an aluminum frame 23 years old and counting.

SIDEBAR:
Why use the cinch straps if the magnet is so strong? The straps provide additional stability and support. I want to do everything I can to take as much stress off of those two little rivnutted M5 bosses in the frame, which otherwise are holding the entire 9-lb battery on their own through all manner of road and trail shocks.

Initially, I used three velcro cinch straps to nearly cover the pack, and also stabilize the magnetic mount as much as possible. Later on, I decided to take advantage of two of the three slots on the battery side’s mounting tabs. These exist so hose clamps can literally clamp the battery permanently to the frame.

The clamps further reduce the reliance on the bottle bosses to do all the work of holding onto the pack. I had already padded the underside of the mount with a thin pillow of red silicone tape. The hose clamp makes no contact with the actual frame thanks to the mount width on one side, and the wire tunnel for the shift sensor and main motor harness cables on the other.

Those clamps also help reduce the potential of battery theft. Sure, nothing is going to stop a determined thief, but the hose clamps – and I made a point of not hiding them for this reason – make it clear to anyone looking that a few minutes (or an angle grinder) will be needed to get that pack off the bike. There isn’t going to be a grab-and-go theft. That fits in with the very limited likelihood of leaving this bike outside at a shop, locked but unattended.

If someone tries to steal it anyway, once a thief shears off or unscrews the hose clamps, they’ll be confronted with that magnet. I bet it will take some time to realize whats holding the battery so tightly. And once that realization dawns, they will have to figure out how to get it moved just right to angle it out of the frame.

Thats time I can spend setting bear traps, digging pits and buying a baseball bat.

I also used velcro to ‘face’ the cinch straps. This holds them together – really only for cosmetic purposes. The straps don’t move once tightened down. The facing (on the sides and the top) just makes the velcro present a little better; keeping the graphics on the battery from bleeding thru in the gaps between the straps.

Handlebar Bag

The Condor Deployment Bag is something I use on almost all of my bike builds. Its easy to adapt into a secure handlebar mount, its small but still the perfect size for a tool bag that can also hold a wallet, phone and keys. These bags are my go-to for hiding wires – and especially controllers – on my 2wd bikes.

The original brown bag was replaced by a black one I also owned – when I finally found it.

Having several of these on hand, I simply switched from a brown one to a black one. The reason is straightforward: black wires blend in better when they are running along a black bag. Note that in some of the photos you may see a lot of wire stuffed behind that bag. I didn’t cut down the brake hoses to size until the very end of the build and test ride process.

Seatpost

This was a big change, but not for an overtly obvious reason.

The vintage Kalloy Uno seatpost that came with the frame worked great. Except as noted above I had reach issues. I had already moved the seat forward, and I did not want to shorten the stem as that would create other issues. So that limited next steps in terms of fitment.

I didn’t need much reach reduction, so I decided to do a seatpost with no setback. My first thought was a Thomson Elite. Which is a great product but not a trivial purchase at about $115. Since I was in that league in terms of cost, I decided to try a dropper post. They all have no setback. A dropper would be handy for all the reasons droppers are handy.

Also, the frame introduces constraints. The post can’t be super long. 350mm is the right length for a seatpost when fit on the frame to my anatomy; any longer means it protrudes down towards the shock, where the potential for contact is worrisome. Droppers tend to be in the neighborhood of 450mm long, so I wanted to find one with minimal drop. Those posts tend to be closer to 400mm. Also I didn’t want to blow the already blown budget, and a really good dropper costs big money.

I found an interesting option that would be an experiment of sorts, and decided to try it: I bought a PNW Components Coast dropper post, with external cable routing. I could have done internal cabling but a cable coming out the bottom hole in the seat tube could once again be a contact risk with the shock.

Why is the Coast an experiment? Because it is a – unique on the market – suspension post as well as a dropper. Advertised motion is 40mm (it can be more) and its a weird choice because this bike has full suspension already. My reasoning behind doing this – and my results – are enough for a full blog post all by themselves so I’ll just say I did it and it worked well.

Dropper post, with wiring thats not too bad; piggybacking onto the brake hose. Ignore that cheapo temporary seat collar.

As a dropper. Jury is still out on whether it is also an effective suspension feature, but it does seem to work for me in an unusual sort of way. Stay tuned for a separate post on this oddball idea and result.

After all was said and done, I did find a way to test whether there was risk of the seatpost hitting the shock: I removed all but about 20 psi of pressure, which let me easily compress the frame by hand, and observe the result. It turns out, for my frame, there is no risk of contact. Perform this check with yours to learn your result.

Seatpost Collar

This one was pretty straightforward, but boy was it frustrating. I have had occasion to lock the bike up outside a store. The Salsa quick release seatpost clamp that came with the frame carried the usual risk: It makes it easy to steal the saddle and post. Since I am using a US$170 dropper and a US$95 saddle. thats worth taking steps to protect.

With a dropper, there is no longer any need for a QR clamp. So time for a fixed collar. I chose a Bike Yoke Squeezy in 35.6mm size, which turns out to be the wrong size thanks to a mistake on my part. Hint: Take the seatpost clamp off and measure under it. Not below it. This frame has two external seatpost diameters, which is invisible if you leave the clamp in place.

Why the Squeezy for a post clamp? It was a whim. The Squeezy is a bit of a unique animal and I wanted to try it out. Its a neat idea and well-made.

But there was that sizing issue, which I was only able to temporarily overcome with some shimming. I ended up finding a basic 34.9mm Axiom seatpost collar in my parts pile that I made work. Its an unremarkable part not really suited to this build. Still, it was handy to just install so I could move on to the next job … and wait for my annoyance at myself to subside so I could spend another US$35 for the correct 35.0mm clamp. Its on. It works. It holds my weight over time with no shifting. It looks great.

The Squeezy defines low profile. Note the very light torque specification. The T25 socket adds a hair of security without requiring an additional tool in my onboard toolbag.

The Wire Harness Tube

This was a unique need for this build. The usual preferred solution of a battery bag in the triangle didn’t work on this frame. Not so great news, as you use the battery bag to hide wires. My best solution to hiding otherwise bare wires was to enclose them in a pipe that more or less matches the frame.

I originally used cheap red PEX pipe purchased locally for about the price of a candy bar. I ended up not being happy with the red color and did a spiral wrap of red silicone tape to get a better match. In a short time it darkened to be a near perfect match to the frame. But it also had a few problems:

Rips like this only get worse with silicone tape, which becomes easier to tear as it ages

The tape was just not durable. I had rips and breaks in it – more than in the picture above . Also, I had cut the pipe a bit too long. When turning the bars to an extreme, the fork poked the top of the tube and pushed it to one side or the other.

Oops. You can see how the fork pushes into the tube when its turned to one side.

The solution was to replace the pipe. I used a length of furniture grade, red 1/2″ PVC – a better red than the PEX came in, so no tape. I had to wait a couple of weeks for it to arrive. Cost was about US$20.

Exit mobile version
%%footer%%