Choosing Bike Locks: Small, Medium or Ridiculous?

I see this question so many times, lets write up my daily outdoor locking strategy so I can just link to it from now on.

The Bad Penny That Keeps Coming Up

I have worked hard to avoid writing on this subject. I try to stick to writing about something unique that hasn’t been done to death elsewhere. And if there’s a subject that has been done to death, its Bike Locks…

  • How To…
  • Whats The Best Lock?
  • Is This One Any Good?
  • and on and on and on…

But the thing is, this is a frequent topic not going away anytime soon. An original stated purpose of this blog is to write down a comprehensive response to a frequently asked question, so I can just link to it, rather than wearing my fingers down, repeating myself.

So here we go.

First: Locking Philosophy

Here’s where I am coming from when it comes to locking: I’m a firm believer in overkill. The lock needs to look impressive and really be impressive. Also, I recognize even the biggest, baddest lock is not impenetrable. What I am trying to do is make my bike tougher to steal than the one next to it. Or the nearby car.

I know full well that against a portable, battery powered angle grinder, typical resistance is measured in mere seconds. The angle grinder attack is what I am trying to provide a best-defense against. My goal is to require multiple grinder cuts and turn those seconds into as many minutes as possible. I’ll do that with a combination of locks that use superior materials. Big locks.

SIDEBAR:
I am also familiar with Ramset style gunpowder-actuated nail guns, and what they can do.  I am not expressly attempting a defense against these.  First of all, they are a one-in-a-zillion risk where the wielder of such a weapon is guaranteed to garner *extreme* reactions from passersby and the local SWAT team.  Secondly, besides big, beefy badass locks (which mine are) protection against such tools is largely about savvy locking technique, which I am using.

Next, I know my locking location has a lot to do with how secure my bike is. I am not locking a bike in a back alley, away from public view in the bad part of town. Instead what I am doing is locking up in as public of a place as I can. Right in front of a store, preferably, with lots of foot and vehicle traffic, and people all over the place. In a neighborhood where someone grinding away with a saw is going to attract attention. Again… we live in an imperfect world. If you look around you will find Youtube videos of people ignoring a guy going at it with an angle grinder… but we do what we can and ‘in-public’ is better than ‘in-hiding’.

Last: I need to easily and quickly deploy my lock. Leaving it outside of a store is part of my daily routine. An inconvenient routine is one you shortcut, or don’t use. So locking up must be fast and easy.

Carry The Lock

Often ignored when considering a locking strategy, this step is important: A lock held down with 10 bungie cords or stuffed under things at the bottom of a pannier fails the ‘easy’ test.

In my case, riding a cargo bike makes this a lot simpler. I have a great big box available to hold my great big lock. As noted elsewhere, I keep my lock in the front compartment of my Bullitt, in this bag:

That bag looks big, but looks are deceiving. Inside the bag I have added a layer of foam around all sides – the same stuff you see in that picture covering the top, bottom and left sides of the cargo bay. Plus I keep my backup hand pump in there. Also the fact I set things on top of it means it gets squished down. Add all that up and its roughly double the size required to do its job.

In keeping with the ‘easy’ mandate, At a shop, my first move is to haul this bag out. Then I remove and attach the lock. The keys are always inside the bag so they are never forgotten. Once the lock is deployed, the keys stay in the bag and everything on the bike that isn’t nailed down goes in as well. Headlights, taillights, my dashcam etc. You need a bag for that anyway and this makes for a quick solution going in, and coming back out again.

Pick The Lock

Maybe its better to say we’re going to choose our lock hardware now. I am going to get right to it and show my top performers. We’ll mention the predecessors that didn’t quite cut the mustard later on. I will try to ignore locks that I have bought and learned they were cheap crap.

Pragmasis Protector 11mm Noose Chain

SIDEBAR:
There are plenty of boron steel hardened chains.  Why use this one?  It is heavy, but also a LOT lighter than competitors of the same thickness, like Kryptonite, Abus or Pewag. Why?  Because the links are much longer.  So what?  Well, the longer your link, the fewer links are needed.  That has no bearing on chain material used to make up length... but it is a big deal because fewer lengths of chain are needed to close the link.  11mm boron steel chain is all pretty much the same stuff.  But the longer links provide the magic to shave a few pounds off of a 6.5 foot chain.  

Additionally, as you will see in pictures below, long links can be threaded one inside the other to create independently locked loops on each side of the chain.

This chain is available in different lengths, and since I am securing an 8-ft long cargo bike, the 2-meter length is the right one for me. As you can see in the following section below, my first chain was a 13mm chain. After some time, I switched to the 11mm chain, with the noose end. Using a noose on one side means you can very quickly tie a noose on one side of the bike (or to the bike rack) and then feed the chain thru the bike frame to where you are using the lock, which secures the bike to the rack. I generally use the lock on the rack side, and the noose on the bike frame as you see below.

One look at a locking scheme like this and its clear if you want this bike, you will have to work for it. That ‘look’ is just as important as the lock actually being strong. You don’t want someone having a go at your lock – and giving up halfway thru.

Deterrence, ideally, means your bike stays put and your expensive lock is not ruined by a failed theft attempt.

I try to keep the chain off the ground, or at the least under the bike. This helps prevent freezing and/or smashing attacks.

Xena XSU-310 lock

This is a motorcycle lock, actually. Just like a bicycle U lock, but supersized. The shackle is a massive, solid 18mm hardened steel bar with 11.5 inches of internal vertical clearance. The body is mono-bloc stainless steel. The shackle is covered in thin, tough transparent vinyl covering. I was originally attracted to it because I wanted to use it in a coastal area and stainless doesn’t rust as easily in the moist, salty air.

This thing is a monster, plain and simple. I thought my Lockitt DIB U locks were big until I set this thing side by side with them. If you want a smaller-sized shackle, the same lock is available in two smaller sizes. But for me, bigger was better.

A thoughtful feature of this lock: Its locking pins don’t allow the shackle to rotate. If the shackle is cut through with an angle grinder, the lock is still secure. A second cut has to be made to create a gap to free the chain. That effectively doubles the time it takes for a successful attack.

It fits the 11mm Pragmasis chain just barely, without any snagging. The chain has a 20mm internal clearance and with the vinyl, the lock has about 19mm.

Now that I have been using it for awhile, I definitely prefer the larger size. Not for the added security it provides, but the added options. Its just plain easier to reach thru that front tire and hook onto something. Having that little bit of extra length over the DIB-260 lock I formerly used has been very helpful, as has the slightly wider loop of the U, which more easily fits around my forks and thru my spokes.

These benefits are perhaps specific to a bike. Maybe a smaller shackle will fit around your forks and spokes just fine. As such, don’t take anything for granted. Locks all have specs on their shackle sizes so take those and do some measuring before you buy any lock.

Lockitt (Pragmasis) DIB-190 and DIB-260 D lock

Pragmasis is a UK-based company and since the Brits refer to ‘U’ locks as ‘D’ locks, I’ll do the same here. This lock is not absolutely necessary to my setup, but it does serve three different purposes:

  1. I put it on independent of my other locking scheme, as shown above – it only takes a few seconds. So no matter what is done to my other lock, this one has to be defeated as well to free up the bike. If you don’t defeat this second lock, you have to carry the bike away.
  2. If my big D lock can’t reach far enough to attach to a solid object like a rack or a pole, I can use this lock like a second link in a chain to reach out further by another foot or so.
  3. If I am just running inside for a minute, or say… standing in a line within sight of the bike, I can throw this on by itself to keep someone from jumping on and riding away before I can stop them.

Its important to have a quickee setup for a bike that is being used for daily utility. Short, easy stops need to be accounted for in your locking routine. For the times when you don’t need to go whole hog, having that quick solution can be the difference between locking it and saying to heck with it and hoping for the best. Its human nature to become complacent.

You can see in some of the photos that I used to use two Pragmasis D locks. The Xena came later on. Since I have those two Pragmasis locks, I re-purposed the second one for use on my Mongoose Envoy, which lives in a different town and uses an identical locking setup.

Here’s what the Lockpicking Lawyer said about this lock:

Also-Rans

These are the bits I used to use, but replaced with the bits I listed above. there’s nothing wrong with any of this stuff. Its just not in daily use now.

Kryptonite Keeper 5-S2 Disc Lock

Putting this little lock in the Also-Ran section is really unfair, as I do use it for other bikes; just not ones that get regularly locked up. If anything, EVERY bike should have one of these secreted in a little bag somewhere. It is small, the key can stay in/with the lock so you never lose it, and it will stop someone from riding off with your bike. The only reason I do not keep it with my daily bike is I have the second U lock now for quick jobs.

The little bright orange cable is not for security. It is a ‘reminder cable’. You loop it around the lock, which is attached to your disk brake rotor. The other end goes up and onto your handgrip. This ensures you remember to remove the lock before you forgetfully try to pedal off with the lock still attached. Its easy to leave the cable permanently attached to your lock so you just snap it onto the rotor, pull the loop up to the handgrip and done.

Pragmasis Protector 13mm chain

This chain is in fact better than the 11mm chain I regularly use. 6-foot long bolt cutters need to be in a bench vise and tightened with a come-along to cut it. Its so strong a human can’t do it. One reason it is not in use is… its too heavy even for me. But not by much.

When I was using this chain, I made my own loop on one end as seen in the picture, with an RL-21 Roundlock closing the loop. That made for a second, independent lockup from the front U lock. The RL-21, as noted below, is effectively invulnerable to many forms of attack. Using it on the back wheel ensured the bike had to be carried away if the front half of the lock is defeated, or an extended stay is required to remove this second , independent piece of the puzzle.

Among other things, for this bike the 2M length of the 13mm chain was just too long

I said ‘one reason’ above, and that reason was not the biggest reason I went to the different chain. the other, main reason was the lack of a noose. You can lock up you own ‘manual’ noose like I did here in a couple of minutes.. It involves a little lock-fumbling and key-sorting and the noose is not cinched perfectly to the size you need in that moment. An actual noose chain on the other hand is deployed and cinched snug in a few seconds. You lose the second independent lock, but as you can see above I found another (easier) way to make up for that.

This is a big example of how important the ‘easy’ rule is and I spent about $150 more than I needed to learn it.

Lockitt (Pragmasis) RL21 Roundlock

You can see above how I used this lock. Here’s what the Lockpicking Lawyer said about it:

And here’s a vid from the guys who manufacture it. Use with the 13mm chain is shown as well:

Nowadays, I keep the RL21 with the 13mm chain. If I need to use that chain I can use the roundlock to secure it.

The ‘Other’ One

I mentioned above that I have a second lock for my Mongoose Envoy that is identical to this one (except it uses the Pragmasis DIB-260 instead of the DIB-190).

Here’s a pic of that very different bike. The lock is on the bike in its permanent location. You can just see the silver chain cover poking up at the back of the kangaroo pouch in those big panniers. Its just sitting there ready to grab, folded along the full length of the bag.

Since this bike is holding things to its sides, to balance the load I put the two U locks in the corresponding pouch on the other side. They go inside the same type of bag described above that I use to hold the entire lock on the other bike. I still need a generous pouch to throw all my stuff taken off the bike like lights etc, so that bag does the same job here.

AFTERWORD: What about a good strong cable?

There’s no way to put this nicely so I’ll just say it:

Cables are bottom of the barrel in terms of security. Big cables are not much better than small ones.

You can use diagonal hand cutters or mini bolt cutters to just cut a few wires at a time rather than trying to cut the whole thing at once and be through the thickest cable in a disgustingly short time. Of course there are tools that cut thru more effectively than hand cutters.

Cables are about convenience. Easy to roll up and stuff into a backpack or bag. Easy to deploy. Unfortunately they are also easy to defeat.

Dishonorable Mention: The Ottolock

The Lockpicking Lawyer made perhaps the most visible debunking of the worth of this lock. The manufacturer vigorously defended themselves. As an Ottolock owner I can say what you see in the video below is absolute, unvarnished truth. I can use ordinary snips like the ones in his video (actually I own straight cut snips like these) and snip snip snip I cut three pieces off the Ottolock cable/strip about as fast as you can say “snip snip snip”. I did this when I tried to use my Ottolock to clamp down a Luna Wolf battery pack and needed it to be shorter (in the end I used a velcro strap).

It is just as secure as it appears to be in this video.

Last But Not Least: INSURANCE

We’ve already addressed the limitation of locks, being they are imperfect. What happens when the bike gets stolen despite your best efforts?

I have anti-theft coverage on my daily-use cargo bikes – the ones that get locked up out in public. I use Velosurance. They are an agent for the bicycle policy offered by Markel Insurance Company. If you do some digging you will find just about every company offering bicycle insurance is in fact an agent for Markel (being an insurance agent myself, I looked diligently and never found another one). I spent time reading the specimen Markel policy (found on the Velosurance web site) and, upon seeing the policy paid out on a Stated Value basis, discussed this with a Velosurance agent in detail before I considered it acceptable.

A lot of folks think their bikes or ebikes are covered under their homeowner’s policy. Speaking as an insurance agent myself, I can tell you to assume nothing. For starters, policies vary by insurance carrier so what your friend Bob has – or thinks he has – doesn’t necessarily have any bearing on what you have.

Also, don’t take your agent’s word for the fact coverage that meets your needs is in the policy. Your agen’ts opinion is non-binding on the insurance company, and s/he will have no part in the claims adjustment process. If you want to get it right… have your agent reach out to a company underwriter to respond to your comprehensive use and coverage questions. Someone like that assuring you of coverage (again, after you ask the right questions) is binding down the road in case there is a claim and the claims department questions whether there is coverage or not.

I have homeowners insurance myself. I got a separate policy tailored specifically to my ebike. One thing in particular: A specialist doesn’t have qualms about modifications and upgrades. They understand them a lot better than a company that only sees something like what you are riding once in a blue moon… if ever.

BBSHD Aftermarket Controller Bracketology

Seeding BBSHD aftermarket controllers has gotten more complicated in 2021. The 2021 choices have seen BBSHD market gorilla Luna up their controller game. To take on start up ERT in the F.O.C category, Luna has recently beta tested their Ludi V2 BBSHD controller. Luna explicitly states to “use this controller in off road only situations”.

The gray wire is an antenna for VESC dashboard & upgrades via Bluetooth on Android device.

I installed a Luna Ludi V2 FOC controller on my Specialized Pitch BBSHD conversion that utilizes a 42T Eclipse and wears Schwalbe 27.5 Moto X tires. Prior to upgrading the controller, the Luna 860c display showed a little over 30 hrs of riding time. I ride the same 25mi route of asphalt with this bike. It’s powered by a Luna Dire Wolf 52v 21aH battery that contains  84 LG MJ-1 18650 cells configured 14s6p.

I love this bike! It’s nimble and has crazy long range via 21aH Dire Wolf. It’s even color matched!

My commuter routine is about 12 mi asphalt in AM. Charge at work to 80%. Then ride home same route. Without changing gearing between the stock BBSHD controller loaded with Karl’s Sauce Settings and the Luna Ludi V2 controller, I have gained about 8 mph top end speed and my battery consumption has remain the same or slightly decreased.

The only issue so far with the controller upgrade is that the battery indicator goes red during acceleration or hill climbs when below about 50v. Previously the stock controller with Karl’s settings at the same mph and same gear selection did not trip the battery icon to red on the Luna 860c display .

On average, I am consuming about 3v less of total battery upon arrival at work, which is the 12 mi mark, before charging the battery to 80% using the Luna battery charger. My transit time is about 45 minutes to work and is nearly all ghost pedaling.

I am basically maintaining the same speed covering the same distance arriving at the same time to work but using less battery. This is possible because I am using less wattage/requiring less PAS as observed on the display.

Best 1st build BBSHD platform is a Thud Buster seat post on a mechanical discs hard tail frame.

The efficiencies can not be attributable to becoming a better ebike rider; getting more efficient in gear selection, braking, running stop light etc. If anything, I have greatly decreased gear changes. I am staying in my most effective cassette gear of 24T, 3rd biggest cassette gear, and not downshifting to provide more leg drive. 24T provides maximum chain wrap with out stripping. The previous 25hr of bike time I stripped out the lower tooth gears to the point I can’t use them under BBSHD power or human only power; the chain just skips terrible in those smaller cogs due to not enough chain wrap and the cassette teeth being worn down.

How much did I pay? This was beta and I did pay my own $. This is not available stand alone from Luna right now. If you want the Luna Ludi V2 FOC controller you have to buy a Luna BBSHD bike. In the past I did buy a Luna Ludi V1 controller for over $200 and I did buy an ERT NXT BAC 855 BBSHD kit for over $500. This beta was somewhere in between.

Make double sure you have the phase wire spade connectors seated properly to the BBSHD.

Is the Luna Ludi V2 desirable? YES!!! At the very least you can extend the range of your current battery. You can get more top end out of your bike and using throttle only you can reach a higher mph.

It was very straight forward to install. I have previously removed BBSHD controllers. I am familiar with how the PAS clip and 6 halls/temp clip operate etc. After you get familiar with this, it took under 1 hour to remove the stock BBSHD controller and install the Luna Ludi V2. It took about 10 minutes to silicone/water proof the connections.

Pro Tip!! When connecting the 3 BBSHD phase connection spade connectors, make double sure the spade goes into the female socket …… Plus look at the 4 pin PAS and 6 PIN halls/temp connector on your V2. Hints can be found how to disconnect your stock controller by actuating the retainer clip of the connector. When you disconnect wiring looms do you generally just grab and yank??!! No. Look at what came with the kit and carefully disconnect the stock controller by actuating the retainer tangs!

2nd Pro Tip!! Elevate the bike. Hang your bike by the front wheel and try to get the BBSHD/bottom bracket as close to eye level as possible. I had the luxury of a ceiling hoist. But you can use your garage door track or a ceiling hook as well. This will make it much easier to remove the stock controller and install the upgrade after mkt controller. You have to water proof all connection in the BBSHD before screwing down the controller and this is much easier at eye level.

It’s a tight fit to get everything folded back properly and the controller fastened to the BBSHD.

Luna has posted a firmware update. Using the VESC app, my nephew flashed the controller wirelessly using his Android phone and the blue tooth connection via the small antenna sticking out of the controller case. The flash upgrade included a pseudo-motor idle function that helps keep the chain semi-tight when letting off the throttle, helping to reduce chain slap. The amount of idle is increased by increasing the PAS level.

Performance into a 15MPH wind flat ground 55v at full sag during these observations.

Throttle only in PAS 5 and the biggest cassette gear of 34T gives 25MPH at 800 Watts; over 30+MPH at 1200 Watts. Full throttle made the LUNA Dire Wolf battery icon go red so I did not hold it there long but it was very fast acceleration and speed.

PAS 5 ghost pedaling and the biggest cassette gear of 34T gives 16.5MPH at 500 Watts; 24T gives 22.5MPH at 500 Watts.

In PAS the speed controller would stick to a MPH level and increase or decrease the Watts to maintain that speed; almost like a governor.

The BBSHD never got too hot to hold your hand on the motor or the controller. The motor never got hotter than 110 F.

Overall the Luna Ludi V2 is very good. It’s $ well spent even if just considering the battery range extension. If you are looking to scooter throttle only you won’t be disappointed in acceleration and top speed. As a PAS ghost peddler, it does not seem that different from the stock Bafang controller loaded up with Karl’s Sauce Settings. VESC app analytics dashboard looks cool but I don’t have an Android device nor the time to play around with those features. Luna warns not to change parameters on the controller without considering the consequences and locked out some of the most dangerous ones to the motor and rider.

P.S. At the time of publishing another field weakened BBSHD after market controller has burst on the scene. Enthusiasts of ASI BAC 855 have banded together via Discord collaboration to present a potential product challenge to Luna Ludi V2. The High Voltage team of Captain Codswallop, Mike and Greg bring a formidable grass roots business plan. I’ve done business with Captain on 3D printing for ebike items and was blown away at the exceptional level of quality and customer service. Captain told me High Voltage is “…new to the market but are providing a high quality product that customers are very happy with…focus…on customer service and quality. We are looking to expand to other motors in the near future.”

The High Voltage brand graphic to look for on authentic products:

Dual Motor AWD Electric Bikes – Case Study: Twin Geared Hub Commuter

A big bruiser geared specifically to be pedaled hard at 32-34 mph, this is my commuter workout-workhorse. Don’t want to sweat? Just relax and pedal easy… at 28 mph.

AWD Ebikes Menu
AWD. OMG. WTF!
Case Study – Flatland Fat Bike Commuter. Hub+Hub (you are here)
Case Study – Alpine Road & Trail. Hub+Mid Drive
Case Study – Low-Power Cargo Beast. Hub+Mid Drive

The Great Pumpkin

  • 2 x 750w 80Nm geared Bafang G060 hubs
  • 1 x 52v, 30ah battery with Samsung 30Q cells, 90a continuous BMS
  • 2 x 35a KT brand controllers
  • 2 x KT brand displays
  • 160 Nm total power

The Great Pumpkin remains my fast commuter workhorse. This bike is meant for transportation to and from a destination, not sightseeing. As such it is designed to travel as close to the safe, legal speed limit as possible. Here in California the assist limit is 28 mph, I stay on the street (no shared-use bike paths allowed) and this bike’s gears are made to let me power it up past that 28 mph limit to about 34 mph – if I am strong enough to pull it off.


A note on speeds and our local roads here, and how they influence the design and capabilities of this ebike:  in California the law limits ebikes to 28 mph (45 km/h) of assist.  Thats an assist limit, not a speed limit.   The maximum lawful speed is the posted motor vehicle speed limit, adjusted downward if necessary to maintain safety.  So if you can pedal the bike faster than 28, thats fine so long as doing that is "safe for conditions".  

These speeds seem like a lot to readers in some parts of the world.  But remember here in the USA we've got open roads that are nothing like you see in many urban centers in, for example, the EU.  The two pictures above come from two different places along my 15-mile commute route.  The speed limit signs are in mph not km/h.  Bear in mind drivers regularly exceed these limits by a significant margin so in rush hour traffic a 30 mph bike is by far the slowest thing on the tarmac, with no pedestrian issues to speak of.  So, on streets like this, if I can pedal to 34 mph - and oftentimes I can - thats perfectly legal.  In fact I have been paced and radar'd by police cruisers and motorcycle traffic enforcement many times without incident.

So the secondary purpose of this bike is to enable me to work hard while still transporting me to Point B at a practical speed. You’ve heard how ebikes let you arrive at your destination without getting all sweaty? Well, this one lets you arrive all sweaty on purpose if you like.

The geared hub motors let it accelerate fast in traffic, and despite its necessary lack of suspension, the fat tires (and the suspension seatpost) let it ride well on lousy pavement. It has over 7000 miles on it at present (March 2021), and benefits from all of the learning I got the hard way building its predecessors. In fact, I am using the same set of wheels I had built for my very first AWD ebike: The Colonel. This is a testament to finding a good wheelbuilder at the Local Bike Shop of your choice and have them build you a quality wheel with quality components.

Fresh from the wheel builder in March of 2017. DT Champion 2.0 spokes, 16mm brass nipples, double-wall Weinmann 80mm rims. Still going strong today, three bike builds later.

Motor Choice

The Pumpkin is a flat-country bike. Dual geared hubs are powerful, but hub motors – since they power thru the axle and cannot use gears – are just single-speed. Despite their power and ability to handle lots of current, they can get the bike up steep hillside streets, but they struggle doing it. Riding this bike in the Carmel/Pacific Grove portion of the Monterey Bay Area, where nothing is flat, I found it could climb anything but it lugged its motors mightily doing so, to the point I feared for their long life. But if you live on flat land (and this bike’s permanent home is in the table-flat San Joaquin Valley), this is the design that will gobble up pavement for lunch. It will get you where you need to be safely and quickly as an ebike can legally travel.

Why didn’t I choose maintenance-free direct drive hubs? Because they lack torque, and that means slow acceleration unless I load the bike down with bigger, higher voltage batteries and motors with much more unsprung mass.

Battery

Having done it the wrong way before out of necessity (translation: too expensive) I put in a single big battery on this bike. It has the biggest battery I could fit into the triangle of this XL-sized frame (A Chumba Ursa Major made with chromoly tubing). A 14S9p (52v) pack that uses Samsung 30Q cells to give me about 30ah. That means it takes awhile to charge. But it also takes awhile to drain, and this single battery is placed down in the triangle where it does not reduce the carry capacity of the bike, or screw up its performance with schlocky placement of a battery on the rear rack.

But doing an AWD bike with a single battery means you have to address more than just size. The Battery Management System (BMS) has to be able to handle the amp draw of two motors simultaneously. Looking for batteries out in the wild that can do this… you’ll find almost none that are capable of it.

Initial battery fitment prior to connecting the power and charging cables. The bag hides a multitude of cable-routing sins.

How do you calculate the sort of battery you need? You take the peak output of both of your motors and add them together. Your BMS’ “continuous” power rating has to be more than that peak to ensure your motors never trip the BMS’ limits. If they do, to reset the battery you have to hook it up to a charger, which is unlikely to be handy on the side of any road you’re traveling on.

So, with a 35a rear controller and a 35a front controller, I need a battery with a 70a continuous (or more) BMS, and thats a special order item. In my case, the BMS can handle 80a continuous current.

Controllers and Wiring

The 35 amp KT brand rear motor controller is sitting under the saddle, zip-tied neatly with small clear, low-visibility ties to the seatpost mounting arms of the rear rack. This puts the controller in open air to keep its heat down. It will reach temperatures of 135 degrees fahrenheit if stored enclosed. A home-made fender comprising of an extended commercial mudguard and cut-to-size flexible cutting board provides complete coverage from water coming up off the rear tire.

The front motor controller is an identical 35 amp KT, housed in the handlebar bag. This bag has had reinforced brass grommet holes placed strategically inside and out so cables can pass thru its inside compartments to the outside of the bag, without creating issues of splashing water (here again extended fenders help). The top of the bag is left zipped open and this keeps heat from becoming a problem. The front motor cable travels directly up and into this bag, while cables for pedal assist, brake cutoffs, display and throttle exit out either a grommeted side entry or out the open top of the bag. The bag itself essentially hides all of the front motor cabling rats’ nest, both by housing excess wire inside itself and via natural camouflage, providing a black backdrop to black cables running along and woven into its MOLLE exterior. Cables exiting and entering are carefully bundled together for neatness.

Is that a controller mounted to the front rack? Nope its a 5 amp weatherproof charger, with the cables housed in the dump pouch, just behind it.

The center triangle bag is stuffed mostly full with the custom-sized triangle battery. Like any triangle bag on an ebike, it also serves to hide excess wiring, and given the dual custom splitters for brake cutoff signals and pedal assist (one sensor signal is split off to both motors for simultaneous PAS power) there is plenty of wiring that thankfully remains invisible thanks to this bag, which seldom needs to be opened. The bag has forward and rear-facing cable holes that don’t suffer from water ingestion, again thanks to the fender setup. A capped XT60 charger plug is coming out the front of the bag just behind (and shielded by) the head tube, and this cap is removed and a charger is plugged in here to recharge the battery.

Display/Controls

Ergonomically, the cockpit is very well designed and reflects this being my third or fourth try at doing the job. There is one throttle for each thumb in easy reach, and both throttles are clocked so when fully engaged, the paddle is pointing straight down. If you hit a pothole your thumb doesn’t push thru and break the throttle. It slips off instead. The PAS panel is also one-per-side, and also within thumb reach without losing your grip on the bars. SRAM 9-speed shifters are in use, because a SRAM shifter gives you enough real estate on a handgrip (vs. Shimano) to stack multiple hand controls and still be able to easily reach everything.

Cockpit view. Notice the max speed reading on the top display. I used the gears and got a workout on the ride into the office that day.

Despite the duplicated motors and controllers, the displays are mismatched simply because I am re-using parts from older bikes no longer on the front line (in this case parts came off The Purple Thing). For this build I needed a new display and the KT model LCD8H was available, so I grabbed one. It is the same display as the KT model LCD3 above it, used for the front motor. The LCD8H is just in color and easier to configure.

And in case you noticed… yes this is a bike with Class 3/Speed Pedelec performance that has throttles. Reality is, though, the bike is designed specifically as a pedelec. Pedaling acceleration via PAS is plenty fast and is in fact (thanks to controller settings) a little faster than using the throttles. They are only put into use typically for a split second on take-off from a standing start while I regain my balance on the bike and settle in to pedaling. If I am crossing a 4-lane street, I am off the throttles before I get past the first lane while crossing and won’t touch them again until the next stop at the next intersection.

Power (too hot)

These two 80Nm motors have controllers feeding 35a to each axle provide giggle-inducing acceleration. So much so I found performance needs to be turned down for multiple reasons:

#1 (Safety). Come to a stop at an intersection. Acceleration is so strong from a stop, you leap forward so fast you are always the first vehicle that gets to the other side, and you’d better be hanging on. Thats fine if you meant to do that. If on the other hand you accidentally engaged pedal assist, you could be throwing yourself – literally – into the path of a car.

#2 – (Safety). Come to a stop at an intersection. Put your feet down, release the bars and take a drink or something. If you engage again (pedal assist or throttle) and forget to put your handlebars straight, your front wheel will shoot off in the direction its pointed in. Typically a bad thing.

#3 – (Fork survival). With this much torque pulling on the front fork, things start to happen that a bicycle was never stressed or designed for. A front fork was never designed to be pulled on hard, for extended periods or in sudden jerks. Especially not day after day for days and weeks stretching into years.

#4 – (Frame survival). This one was unexpected: Even though I am using a highly durable hand-made-in-USA frame, I still found it was straining under the repeated daily stress of stoplight-to-stoplight acceleration from the rear motor. Specifically I started to hear creaks from the rear triangle and dropouts. eek.

#5 – (Safety again for crying out loud!). I use fat street-smoothie tires in summer. Doing that with the motors unrestrained makes for about a half rotation of front wheel spin on full throttle, and maybe a 1/4 spin on pedal assist… and a goodly chirp out of the back, at the least (lots more if the ground is not clean, dry pavement). Thats fun for an afternoon showing off but more than that and its just plain dangerous.

Power (just right)

To slow down the bike so it accelerates at a safe rate on city streets, and doesn’t wear itself out from all the extra stress of doing this day in and day out, I utilize a setting in each of the two KT brand controllers that sets the power curve to ‘slow start’: C5=00 is undocumented on all but the newest KT display manuals. Where it is documented, it is listed as the most restricted of the three ‘slow start’ modes.

What this does is create an acceleration curve slope that is shallow at tip-in but increasingly steep as it continues forward. Here’s the crazy-cool part: Even dialed way down on both motors this bike is still typically faster than anything else crossing the intersection from a standing start. So you aren’t missing out on much in the way of fun if you want to pour on the amps. Its just safe, sane and controllable when its put on a leash.

Torque Arms (!)

I’m not going to get too deep into the specifics of this topic, but I will say if you use hub motors you have to use torque arms. Gotta do it. Thats for any motor that has ‘flats’ on its axle to allow their use (which is almost all of them). It is true many motors do not need torque arms because they are of such low power. I will say having suffered the consequences of not using one, its WAY better to be safe than sorry and just go ahead and install them regardless of motor power.

What could happen? If you don’t use a torque arm, the force of the motor will overwhelm your bicycle’s dropouts and the motor will “spin out”. That means your steel dropouts will not be able to contain the motor’s axle, which will spin (instead of the motor casing spinning) and when that happens the dropouts spread. Your frame or fork is effectively destroyed and unsalvageable at that point. These 750w, 80Nm motors are right on the edge of demanding two torque arms. For sure they need one. I have used two on the front motor and one on the rear, where the stronger rear dropouts are much less likely to have an issue.

Gearing

Last but not least… take a look at the pictures on this page and you will see the biggest front chainring ever on a fat bike. Look to the back axle and you may be looking at the smallest cluster. And the derailleur is a mid-length cage, to boot. Fact is, this bike was geared to be pedaled fast on the street, not overland on trails as is the norm for fat bikes.

The front chainring is a 50T ring, while the rear cluster has an 11T small cog. Frankly I forget the size of the biggest cog because I never use it. Its 28T… Maybe 30. And since the hubs on this bike are the motors, powering the bike thru the axle, not the drivetrain, gearing is largely useless unless I want to pedal faster while going slow. This almost never happens because this bike should not be taken on pedestrian paths or similar where such slow travel is necessary.

Redundancy

For a daily driver bike that is transportation, not recreation, you need to address many areas to ensure reliable, day-in, day-out operation. There are many issues addressed on that topic with this bike, but I’ll only touch on the AWD-specific ones here. In a word: Redundancy. If you do a general overview of this bike’s propulsion systems, you will see almost everything but the battery is a separate, independent system. None of this is accidental or done because I was forced to do so (you can buy controller solutions that reach out to two motors at once, for instance). Its done this way because its better. Dual throttles are better. Setting PAS independently per wheel is better than combining the two. Even two different displays let you focus on different bits of each (although that one I could do without if push came to shove).

Redundancy on a dual motor bike can be a big benefit. I’ve had one unfortunate lesson in this: I went over the handlebars and slammed straight down on the pavement, cracking some ribs. I also bent my front fork (just a little) and smashed my rear throttle, among other things. That broken throttle disabled the rear motor despite all other components being in working order. I was able to limp the bike home without pedaling, which I really needed given the cracked ribs and various and sundry other minor injuries.

This is one more reason by the way, why I want throttles on the bike. If I am physically unable to pedal I want to be able to get me and the bike home, or to the emergency room as the case may be.

Gallery

And THAT is my rain or shine daily driver.

Dual Motor AWD Electric Bikes (the good and bad)

I like to build top-quality-component ebikes from the frame up. Quite a few of them are dual motor or AWD or 2WD or whatever you want to call them. Why would you build an AWD ebike?

AWD Ebikes Menu
AWD. OMG. WTF! (you are here)
Case Study – Flatland Fat Bike Commuter. Hub+Hub
Case Study – Alpine Road & Trail. Hub+Mid Drive
Case Study – Low-Power Cargo Beast. Hub+Mid Drive

In the Beginning…

Well, I could spell ‘ebike’ and that was about it. I had a solid background as a lifelong cyclist, but I went over to the Dark Side and started riding ebikes. I had been working on my own bikes for most of my life and I was pretty good at that part.

So, as an experienced cyclist but a newbie ebike owner I came across a bike built by my (now) friend Houshmand Moarefi, who is the head honcho over at Ebikes USA in Denver. He took the same model of rear-hub-motor ebike I had, upgraded the rear motor, then added a front motor, controller and surrounding bits to make a badass AWD e-fatbike. He posted his creation on the Interwebs.

Figure 1: Houshmand Moarefi’s 2wd Sondors Original. Want to know what dual-motor is good for on an ebike? Just look here. He still rides this bike and you can see it on display at Ebikes USA in Denver.

After seeing the bike online – and peppering Houshmand with questions – I did what everyone on the internet does: shamelessly copied his idea. It is pictured in Figure 2 below. This was taken the night I completed it, moments before I opened that garage door and took my first ride.

Figure 2: AWD by Matt… Version 1.0000. a.k.a. The Colonel (“Colonel Sondors”). How much did I have to learn about doing AWD right? I’ll have to make a list.

Its a good thing I took the picture, as 15 minutes later I broke it. I got it fixed and it gave me years of service, but thats another story entirely. Suffice it to say in that pictured moment, we see triumph and despair occurring almost simultaneously.

What are we in for, building one of these things?

First… “Whhyyy?”

Why put two motors on an ebike? Well… “because we can” works. But lets do better than that.

Is it even possible?

Not so long ago, internet experts in the DIY ebike crafting community would tell you all about how a powered awd ebike could not even function in the first place.

  1. The powered wheels would fight for supremacy between each other.
  2. It is essential to match the power to both wheels but impossible to do so.
  3. Even slight differences in wheel circumference between the two would make terrible things happen.
  4. blah blah blah

So, I was being told it could not be done after having put thousands of successful miles on a bike that could not exist. A lesson on the value of internet experts. Only value the advice of those who have done the work and actually know things.

I don’t want to get too deep into a litany of refutation on common mistakes, but I do want to clear up a couple that come up the most often. All three, really, are more or less re-statements of the same misconception:

Matching Power (current) to the Wheels

This is a common worry, but not a real one as you will discover moments into your first ride. The concern is dissimilar power levels cause problems. They don’t. Tailoring power front to back as conditions change is a major benefit to AWD. In simple clean/dry conditions, all that will happen is the wheel that gets less power doesn’t work as hard.

The easiest way to understand how this is: Geared hubs freewheel forward. So the same thing happens if you have no motor on the back and you are, say, going down a hill with a front motor. The watt output of the front motor decreases as gravity ‘powers’ the speed increase (or you pedal your little heart out on flat ground). Likewise, differences in circumference are a non issue. This is true in bikes with slightly different tire sizes, but is most visibly proven with the in-service bike pictured below.

Figure 3: Different types of motors with perpetually different outputs… and totally different wheel sizes. It still works great.
Contention

Here again, one ride will lay this concern to rest. Two motors will not fight for supremacy with each other despite differing power levels. Partly because of the geared hub’s ability to freewheel. You should take it for granted you will have different power levels on each axle. I commonly keep low power on my front wheel (I will expand on why further on) but for my hub+hub commuter I often just go full blast on each motor and pedal up over top of it. In that instance, with two big motors giving it their all I only very rarely feel a bit of a shift in pull vs. push and it is very minor. Another technique on that bike: 5 levels of PAS on the rear wheel plus 5 on the front means that – in good conditions where I do not vary the power for safety – I have PAS with 5+5=10 levels. As I want more I ratchet up the rear a notch, then the front, then the rear and so on never giving all PAS power to just one wheel.

One Throttle/Two Motors

You don’t want this. You can have it but you are selling yourself and the platform short if you go to the extra amount of trouble to make it happen. I will get into some real world specifics of why this is later on. The short version is if you unify the throttles or even work harder to unify PAS power levels to the two wheels you will be introducing problems with traction and control. You want to keep your control granular. It won’t be confusing or difficult!

What About Two Direct Drive Hubs With Regen?

What I said above doesn’t apply. If you expect to use regen on a twin-DD-hub AWD bike then you are talking about a whole different animal in terms of two hub motors coexisting. I know its been done, but I have never done it personally. I will let some other pioneer on the trail take the arrows in the back on that one (I suspect: regen can be used on the rear but not on the front… or just don’t do regen at all with DD hubs).

A final point: Years into having AWD bikes in service, there are now numerous commercially-produced examples in plain sight. The arguments that it cannot be done have melted away now that so many have obviously done it.

Figure 4: The Purple Thing. Built after the death of The Colonel (cracked frame not related to AWD)

So YES you can do AWD. The question is are you doing it right? Well, thats a whole ‘nother thing.

Whats the Up Side?

Take a look at Figure 1 for the most obvious example: All Wheel Drive on a bicycle is every bit as good of an idea on a bike for the reasons it is a good idea on a car, truck or ATV. On other vehicles, putting more power to your back wheels is not as good of a solution as putting power down to all wheels. It is the same on a bicycle, but so few have done it, the result is not the obvious no-brainer it is on other platforms.

If conditions are sub-optimal, as in rain, snow, mud, riverbed rocks, hillsides and whatnot… AWD on a bike gets you through it easier, across the board. If conditions are ridiculously bad, AWD can get you thru things you thought were impossible to ride. Oftentimes so easily you stop, look back and wonder how the hell you just did that.

The range of things you can ride through just got a lot wider.

If on the other hand conditions are just dandy – say, a smooth, flat, dry paved street – having both wheels deliver power to the ground is again an improvement for all the same reasons it is better on an exotic sports car. Powered traction is delivered to the ground across twice as much rubber. Everything just works better.

And since the improvement makes for a qualitative, but drama-free result, its really hard to describe other than to say ‘everything just works better” or “this feels wonderful, like how it was meant to be” … which do not help much when explaining AWD to skeptics. Nonetheless… the nebulous, big-brush-stroke description is accurate.

In terms of acceleration, doing it with AWD vs. RWD is a very different rider experience. You aren’t being pinned to your seat, nor is your body wanting to slide off the back while you hold onto the handlebars for dear life. Instead you get an amazing rate of acceleration, but it is smooth and – again – without drama. The feeling is its effortless for the bike to do what it is doing.

Mechanically there are benefits as well. If you are keeping tabs on the amount of heat your motor generates, you’ll find gunning one motor around will get so hot you may not be able to touch it for awhile. Not so good, especially with nylon gears inside. But: Run two geared hub motors as a team to achieve the same performance and by some miracle the two don’t even get a fraction as hot as did the one. All of a sudden a motor that was working itself to death isn’t even breaking a sweat, and you’re going at least as fast and as hard.

How is this possible? In May of 2020 Grin Technologies did a detailed technical analysis of multi-motor ebikes. They explain how this is possible, complete with the technical details on why it happens. Its well worth a watch if you are interested in taking a deep technical dive on your AWD ebike options. I have queue’d up the video in the link below to the exact spot where he explains the heat reduction.

Another issue not generally considered is redundancy. With two motors, if something bad happens on your ride and you lose a motor, you still have another and can limp home on it. I learned this the hard way once when I went over the handlebars on my twin-hub Great Pumpkin. I smashed one of the throttles and disabled the rear motor completely. I managed to roll home on the front motor without needing to pedal. With freshly cracked ribs that was exactly what I needed.

Whats the Down Side?

AWD is not all sunshine and roses. There are down sides. Most of them only affect the bike builder. But a few do affect the rider, so we’ll look at the negatives from both perspectives.

For The Builder…

Put simply, AWD on an ebike is one hell of a lot more work. There is so much more you have to keep track of. So many more wires that have to be hidden.

Fig. 5: Custom brake cutoff splitters and extensions for sending signals to 2 controllers

You have to address the issue of brake cutoffs going to two separate motors simultaneously. Pedal-assist to two motors at once is a beautiful thing. But only for the person riding the bike. For the builder it typically means customized controller settings and maybe even a little fabrication to get a sensor signal to two motors at once.

Fig. 6: PAS splitter cable (one sensor –> 2 controllers)

Battery power? You’re going to need a big battery, and it needs to deliver more power than pretty much any regular ebike battery available on the open market. So you either have a single custom pack made or kludge together off-the-shelf packs and suffer through the weight and space issues that go with them.

Fig. 7: Cutout sized, marked and photo sent to the battery builder. All thats left is to drain my bank account.

What does a front motor need in terms of structural support? You’d better think that one through. NEVER use a suspension fork in an AWD build. Your motor can literally pull the thing apart. Whoever designed a bicycle fork never expected a powerful motor would be pulling on it for extended periods, or in sudden jerks. Thats tough on a chromoly fork but they can handle it. Its typically too much for an alloy fork (aluminum is nice and light but doesn’t bend: it breaks) and it is definitely too much for a suspension fork that has 2-piece blades that can be literally pulled apart.

Not to mention fork dropouts. A hub motor must have torque arms attached that prevent the motor from ‘spinning out’ (That is how I broke the Colonel on its maiden voyage; destroying its fork dropouts). You generally cannot use quality torque arms on a suspension fork due to its physical construction. If so, the dropouts have to endure 100% of the punishment and… newsflash … they may survive today but they won’t have the kind of long life they would have had without a motor axle trying to tear thru them.. Internet discussion groups are chock full of pictures of DIY builds where someone used a front hub motor and their suspension fork’s dropouts snapped clean apart. Even with a torque arm.

We’re not done with the front fork yet. Regardless of construction, that pulling on it can loosen your headset at an alarmingly fast rate depending on your power and acceleration levels. If its a problem you have, you will want to think of ways to keep that headset in place (psssst… use two star nuts) and while you are at it, make sure you use a superduty headset with steel races. And a serious mtb stem that clamps the crap out of your steering tube.

You can google “broken ebike fork” or just follow this link (one of many) on Endless Sphere to see more electric motor + fork carnage.

So… How do you get away with using a front suspension fork, then? You see people do it with front-motor bikes. Assuming they thought the job through and are not just future emergency-room visitors, its simple: use a very low power motor. Or neuter a powerful motor and trust the buyer won’t know any better because hey… nobody has any actual experience with these things so you can give them just a little power and they will still be thrilled.

So… to build or sell an AWD bike its a whole lot of work for the same result (a single finished bike). Its no wonder AWD bikes are not common, and when they are up for sale, the seller wants a high price. Assuming they did their job right (never assume), a lot of work went into that bike.

Fig. 8: Wires everywhere. I have to figure out a way to hide all this…

For The Rider…

Fortunately, the downsides of AWD are minimal if all you have to do is ride the bike. But they do exist. All of the negatives can be eliminated if you just realize this bike is a new kind of animal and take it easy when starting out. So… learn how to handle the increased traction, power, and the subtly different behavior.

Dual Throttle

If your bike builder did the job right (I’ve said that two times so far and not by accident), you have two throttles – one for each thumb – to let you apply power granularly to each motor as the needs of the moment come up. Thats a new feature you will need a bit of time to learn how to take best advantage of. The basics of this will be learned by the time you have traveled about one city block. The finer points will take some experience – not a lot – to figure out.

  1. Holding down the front throttle in a turn has the end result of elongating your turn radius (this is about how you naturally ride, not how the bike handles… but it still happens). You cannot take a turn as sharply if applying front throttle, and could wind up smashing into the center median in a right turn in traffic, or the curb in a left turn thru an intersection. There is an easy solution: stop pedaling, release front throttle, turn in, re-engage front throttle just at turn-in so the slight delay will engage the motor right about at the moment of corner exit. Leave rear throttle engaged throughout the turn if you can safely get away with it). That turn procedure all takes place in the space of about two seconds. It will become second nature in short order. But it has to be learned. Now… thats how you hot rod your way thru a turn. You won’t want to do that all the time, and mostly you will go thru a turn no differently than you do on any ebike.
  2. On singletrack/trails, less power to the front wheel is more. Rip down a trail, hit a root and the front wheel bounces up. If it comes down pointed in a different direction than you are headed, your now-powered front wheel will shoot off in that new direction if its going full blast. Keep front motor pedal assist power low – much lower than what you have set for the rear. Then when the inevitable happens its easy to deal with. I’ve found pedal assist dialed down in the 200-250w range is best. If you decide you want more front wheel power at any point, a dab of throttle will do ya. You know you are overdoing it if you get any level of wheel spin in the front.
  3. You are no longer the slowest thing accelerating from a stop at an intersection. So if you are not the first vehicle in the left turn lane, Your instinctive use of full throttles to both motors will rocket you right into the rear bumper of the car in front of you. This is an easy fix. In a left-turn-lane situation, initially use only rear throttle, then add the front when the car in front of you starts to pick up speed. Dial it back again as that car completes their turn and lifts on their own throttle before straightening out. Or you can just hit the front throttle for a split second to get yourself rolling from a stop, then drop it and let PAS manage the rest.

Clearly from these examples, manual AWD acceleration (separate from pedal assist) is a learning process. A dual throttle is a big part of getting this down pat without needing to dumb down the bike’s performance.

You can run an AWD bike with a single shared throttle, but doing so means you will be lifting more frequently and when you do its all-on or all-off. You will lose the ability to decide for yourself what happens. The result is more jerky and less refined.

Battery

If your bike builder did the job right (there it is again), its got a single big battery with a high capacity Battery Management System (BMS) capable of handling the peak and continuous loads of both motors running together. For the rider who has such a setup, the only thing necessary is to set aside enough quality time on a charger to get this bike up to snuff to carry the day’s ride.

Fig. 9: The Purple Thing was … Gen 1.5. Rear motor battery in triangle, front motor battery in the rear rack pack. Front controller in the handlebar bag. Rear controller is in open air under the seat on the rack stays (best for cooling).

For the rider not lucky enough to get a proper battery, that means – at the least – putting up with dual batteries in positions that reduce carry capacity. The rear rack typically gets the duty for one battery in a dual-pack system, so whatever your rack’s capacity was, take off 10 lbs and only use the sides. You may also have to deal with charging the two batteries separately, which is a big drag on convenience and turnaround. You *will* have days where you forget to go and switch the charger to the other battery. Speaking personally: Been there, done that.

Fig. 10: One of my Gen 1.0 iterations with the front motor battery in the bag under the handlebars. Don’t ever do this (but the dual kickstand worked *great*).
Maintenance

Two motors = two sets of service intervals. In practice this should not be a big deal, but fair is fair – we have to count this as double the effort on motor maintenance. This is the part where the direct drive hub people all jump up and remind you for the 100th time their hubs need no maintenance. You will also get slightly increased wear on the front tire, now that its powered.

Commercial Feasibility

I’ve made it pretty clear what I think a proper feature set is for these sorts of bikes, based on the fact I started doing it a while ago, and I’ve had the opportunity to work thru a variety of designs and iterations to find out what works best.

  • Dual throttle
  • Single hi-current battery low and centered
  • Redundant, dual controllers and displays
  • NO front suspension
  • Shared signals from sensors

All you have to do is look at what is out there commercially to see none of them do this. When I look, I see the sort of features – and mistakes – from when I first started kludging AWD bikes together. The reality is, from a commercial perspective we are unlikely to make much headway forward in the near term. Why?

Money… thats why. What I describe is maximum-cost given its redundancy. Its also darned expensive to build an XL battery with a high capacity BMS, and in addition to that, there is the issue of minimum order quantities from component/battery manufacturers. I don’t see a proper AWD bike coming from a commercial vendor unless one goes on a mission to sell a great bike and not take such a high profit margin.

More likely to happen: Development of a suspension fork strong enough to withstand the pull of a front motor over the long haul. It remains to be seen if ANY of those in use now on commercial AWD bikes is going to last. We’ll have to see if product liability issues (and injuries) ensue from whats in use now, or whether the sellers have de-tuned the front motors sufficiently to let those forks survive. But down the road, this is definitely something that could successfully evolve.

Something that came on stage right about the time I published this article is the Eunorau Defender-S on Indiegogo. That is a full-suspension bike, so there’s the front-suspension concern. Given its late-2021 delivery date (plenty of time to figure stuff out), the fact this vendor is going nowhere near any obviously phony claims, and reliable people who know the company are giving it a serious look, this AWD bike may be something of a landmark for the species both in price and thoughtful use of components.

I would be remiss if I did not mention the AWD motorcycles, bikes and ebikes developed by Christini, where they have created a unique, robust, mature – and patented – system to share the power from one motor (rider or electric) to two wheels via mechanical linkage. Lets say that a different way so its clear what they have accomplished: They tap into the power of a single motor (either the rider or a BBSHD) and use that to successfully, reliably power two wheels. Its pretty neat stuff.

What does all this mean for the DIY ebiker? Well, the tools and components are out there for you to build your own, and do it considerably better or less expensively (or both) than anything available in the commercial marketplace.

Fat chance you’ll see a tree-climber like this in stores near you anytime soon.

Wrapping It All Up

The best way to see what good can come from an AWD bike is to look at some representative examples. I have chosen three that work very well for me, and do so in very different ways. Because we’ve gotten to a good place to pause with this post, I’ll do so and point you to the individual case studies that should be linked together in the menu up top.

A Basic (e?)Bike Tool Kit

Rather than looking at the ideal kit, whats the basic everyman version?

Lets Not Get Carried Away Here…

In my previous post, I laid out my idea of an ideal tool kit for my current daily driver/commuter/shopper/cargo bike. That sucker is one big bike, and given its nature, I can carry along a lot of crap with me (like a chair!) without really noticing. I thought maybe it might be a nice idea to toss out a short post supplementing that one, showing what I carry along on a much more normal sized ebike.

So, without further ado, lets see all the stuff:

The Patch Kit

As I noted in the other post, I am using kits I made myself of bulk patches and bigger vulcanizing fluid tubes. I save a little money, can carry more patches in the same space and get a little better container. If you just want to cover this base and aren’t into buying patches 100 at a time, the Rema Large Touring Kit has been on the market for decades, largely unchanged, for a reason (since I was a kid riding in the 1970’s, they improved the sandpaper. Thats the only change). It will suit you just fine.

Rema Large Touring patch kit: The gold standard. Throw away the instructions

The Tire Levers

No discussion of alternatives this time. These Park 6.2 levers are sturdy and thin, so they fit more readily in a small kit. Over time as I mentioned in my other article, I have tried many different levers and settled on these. They’re worth the extra money.

Very thin plastic coating, metal core with smooth exposed metal edges… The best lever I have found, on balance.

A Tire Patch

If you encounter something that puts a major slit in your tire, you need some way to limp home. The Park Tire Boot is basically just a great big gooey glue patch and probably the best overall solution to this. Another one is to pull a dollar bill out of your wallet and line the tire under the slit with it. Still another: Wrap duct tape around the outside of the tire and rim and suffer thru the thumpThumpThump on the ride home (I have done this and it really works). But a tire boot is the cleanest solution and may even be a permanent fix if the tire is not too badly damaged.

A Tire boot is different from duct tape in that the goo on the patch will really stick – forever – on the flexible corded tire surface.

Small Pliers

At minimum, small needlenose pliers. Why? To pull out a bit of stuck metal or glass from your tire. If space permits in your bag, bump that up to a small multitool with a pliers attachment so you can count in a knife, screwdriver etc.

Pocket Knife

If you bumped up to a multi-tool above, you already covered this base.

Stubby Hex Wrenches

I used the long version of the Bondhus hex wrench set in my big kit. But usually I use this shortie version of the same wrench set. If I was REALLY trying to save weight I would pull out all the wrench sizes I don’t use, but you never know when you could use an extra little pry bar or brace ;-D

Short Adjustable Wrench

If you have a hub motor, then you need one of these to remove your wheel IF NECESSARY. While a big wrench is always easier to use as a lever, you should be able to use a small 6″ wrench almost as effectively. Make sure you need one of these for wheel bolts before you bring it along.

Its not big. But its big enough. Check to be sure it will operate in the available space on the frame – in your garage before you need it.

c02 Inflator and cartridges

This is something you will keep in a separate bag of some kind. It is your backup inflation method – that will be your primary in some cases where you need to blast in a lot of air fast to get a tire back up to pressure so the sealant inside can do its job. Usually that means blast in a cartridge, jump on the bike and ride a half block and pray the hole has sealed. If it does, use the pump to get it back up to a rideable volume. I haven’t discussed co2 before so this is what I used:

C02 inflator

There are many out there. I have settled on the Lezyne inflator and have half a dozen of them. You can save a buck or three on something different, but this model has a regulator that doesn’t stick out so it can get bent in your bag. Its reliable over time and multiple uses. Its just a clean, reliable example of the species.

Super small and reliable. Best of breed.

co2 Cartridges

Bring as many as you can figure out how to carry. Especially if you have a fat bike. I use this brand and size (25g) of co2 cartridge… but the price they want for 9 is about what I paid for a pack of 30 of the things. Prices have gone way up on these bulk cartridges in the year or two since I bought them. Shop around and you can get a better price, but not a lot better. For tires that are not fat tires, you can get away with 20g cartridges.

Pump

Here again you have multiple choices. If you have a road bike you will want a high-pressure pump. If you have a mountain bike you will want one slanted towards high volume. While I generally like the Lezyne line of portable pumps, I have one of these and its a great alternative. The T handle in particular is worth a lot when it comes to delivering a hundred pump strokes, but also the screw-on chuck and the floor-mounting ability make it a standout. Typically a pump is either in a separate bag or strapped into a mount on one of your water bottle cages. This pump does have a cage mount included.

A Bag to hold all this Crap

I use an under-seat bag, personally. The one I decided I liked that holds all my stuff is a 1.5L bag found here on EBay that you can also find on AliExpress, so long as you are willing to take the usual risks associated with buying direct from a Chinese vendor (I did).

I have 4 or 5 of these bags. Cheap, roomy, well-made and they stay put.

There are many other alternatives. This one looks promising. I like velcro as it stays put where adjustable-length snap buckles tend to slip.

Chances are pretty good a bag like this will be large enough to handle more than the tool kit, like your keys for sure and maybe your wallet as well (or a couple-three co2 cartridges!).

The End

I think. We’ll see if people come up with more questions on this subject on the FB groups where posts like this one are used to provide more in-depth answers.