A Basic (e?)Bike Tool Kit

Rather than looking at the ideal kit, whats the basic everyman version?

Lets Not Get Carried Away Here…

In my previous post, I laid out my idea of an ideal tool kit for my current daily driver/commuter/shopper/cargo bike. That sucker is one big bike, and given its nature, I can carry along a lot of crap with me (like a chair!) without really noticing. I thought maybe it might be a nice idea to toss out a short post supplementing that one, showing what I carry along on a much more normal sized ebike.

So, without further ado, lets see all the stuff:

The Patch Kit

As I noted in the other post, I am using kits I made myself of bulk patches and bigger vulcanizing fluid tubes. I save a little money, can carry more patches in the same space and get a little better container. If you just want to cover this base and aren’t into buying patches 100 at a time, the Rema Large Touring Kit has been on the market for decades, largely unchanged, for a reason (since I was a kid riding in the 1970’s, they improved the sandpaper. Thats the only change). It will suit you just fine.

Rema Large Touring patch kit: The gold standard. Throw away the instructions

The Tire Levers

No discussion of alternatives this time. These Park 6.2 levers are sturdy and thin, so they fit more readily in a small kit. Over time as I mentioned in my other article, I have tried many different levers and settled on these. They’re worth the extra money.

Very thin plastic coating, metal core with smooth exposed metal edges… The best lever I have found, on balance.

A Tire Patch

If you encounter something that puts a major slit in your tire, you need some way to limp home. The Park Tire Boot is basically just a great big gooey glue patch and probably the best overall solution to this. Another one is to pull a dollar bill out of your wallet and line the tire under the slit with it. Still another: Wrap duct tape around the outside of the tire and rim and suffer thru the thumpThumpThump on the ride home (I have done this and it really works). But a tire boot is the cleanest solution and may even be a permanent fix if the tire is not too badly damaged.

A Tire boot is different from duct tape in that the goo on the patch will really stick – forever – on the flexible corded tire surface.

Small Pliers

At minimum, small needlenose pliers. Why? To pull out a bit of stuck metal or glass from your tire. If space permits in your bag, bump that up to a small multitool with a pliers attachment so you can count in a knife, screwdriver etc.

Pocket Knife

If you bumped up to a multi-tool above, you already covered this base.

Stubby Hex Wrenches

I used the long version of the Bondhus hex wrench set in my big kit. But usually I use this shortie version of the same wrench set. If I was REALLY trying to save weight I would pull out all the wrench sizes I don’t use, but you never know when you could use an extra little pry bar or brace ;-D

Short Adjustable Wrench

If you have a hub motor, then you need one of these to remove your wheel IF NECESSARY. While a big wrench is always easier to use as a lever, you should be able to use a small 6″ wrench almost as effectively. Make sure you need one of these for wheel bolts before you bring it along.

Its not big. But its big enough. Check to be sure it will operate in the available space on the frame – in your garage before you need it.

c02 Inflator and cartridges

This is something you will keep in a separate bag of some kind. It is your backup inflation method – that will be your primary in some cases where you need to blast in a lot of air fast to get a tire back up to pressure so the sealant inside can do its job. Usually that means blast in a cartridge, jump on the bike and ride a half block and pray the hole has sealed. If it does, use the pump to get it back up to a rideable volume. I haven’t discussed co2 before so this is what I used:

C02 inflator

There are many out there. I have settled on the Lezyne inflator and have half a dozen of them. You can save a buck or three on something different, but this model has a regulator that doesn’t stick out so it can get bent in your bag. Its reliable over time and multiple uses. Its just a clean, reliable example of the species.

Super small and reliable. Best of breed.

co2 Cartridges

Bring as many as you can figure out how to carry. Especially if you have a fat bike. I use this brand and size (25g) of co2 cartridge… but the price they want for 9 is about what I paid for a pack of 30 of the things. Prices have gone way up on these bulk cartridges in the year or two since I bought them. Shop around and you can get a better price, but not a lot better. For tires that are not fat tires, you can get away with 20g cartridges.

Pump

Here again you have multiple choices. If you have a road bike you will want a high-pressure pump. If you have a mountain bike you will want one slanted towards high volume. While I generally like the Lezyne line of portable pumps, I have one of these and its a great alternative. The T handle in particular is worth a lot when it comes to delivering a hundred pump strokes, but also the screw-on chuck and the floor-mounting ability make it a standout. Typically a pump is either in a separate bag or strapped into a mount on one of your water bottle cages. This pump does have a cage mount included.

A Bag to hold all this Crap

I use an under-seat bag, personally. The one I decided I liked that holds all my stuff is a 1.5L bag found here on EBay that you can also find on AliExpress, so long as you are willing to take the usual risks associated with buying direct from a Chinese vendor (I did).

I have 4 or 5 of these bags. Cheap, roomy, well-made and they stay put.

There are many other alternatives. This one looks promising. I like velcro as it stays put where adjustable-length snap buckles tend to slip.

Chances are pretty good a bag like this will be large enough to handle more than the tool kit, like your keys for sure and maybe your wallet as well (or a couple-three co2 cartridges!).

The End

I think. We’ll see if people come up with more questions on this subject on the FB groups where posts like this one are used to provide more in-depth answers.

A Proper (e?)Bike Tool Kit

You need to carry tools as a matter of routine. Especially if you ride daily for transportation or commuting. But what do you really *need*?

This is the companion post to “(e)Bike Flat Prevention“. In that post, I talked about how best to prevent the inevitable: Flat tires. Well, since they are inevitable you had better be able to fix one when your luck runs out. Part of that process is having the right tools for typical roadside jobs.

If you think there is too much stuff in the bag here, check out the Basic (e)Bike Tool Kit as a more mainstream alternative.

As I mentioned in the initial post on this subject, I ride pretty much every day by choice. Day in, day out. If it is raining I’m riding. Same for when the sun is blazing. I’ve been doing it for many years and over time I have experienced quite a lot in terms of pratfalls, mishaps, bad decisions and just plain rotten luck. One of the benefits of experience has led me to make specific choices with regard to the tools I bring along with me on the road. I see some folks bringing along the kitchen sink, including bandages, spare electrical wire and diagnostic equipment… All kinds of crap. I’ve been there myself, but if something hasn’t been used in my kit in awhile, it gets left at home eventually. The reverse goes for something that totally saved my butt. Its got a spot in the kit for life.

So… what does the kit look like? I’ll use the BIG one on my Surly Big Fat Dummy. It is larger than some of my kits, but not by much. I’ll go over the whys and wherefores of every item and you can decide if whatever it is I am including is something you want to leave off.

Lets See All The Stuff

Whats Missing?

Before I go into all the details, lets talk about what you cannot see.

The Electric Pump

I wrote up a post not too long ago on an emergency electric bike pump that uses the ebike’s battery so it can remain lightweight. That pump is on the It Saved My Ass list so its always included. As you can see in the linked article, I keep it in a cloth pouch and generally it sits at the bottom of one of my panniers.

The Spare Tube

I carry one of these whether I am running tubeless or not. Its the last line of defense between me and trying to carry the bike home. The spare tube on my Surly is located in the ‘basement’ deck at the back, in a ziploc bag. Where it will hopefully remain forever.

One item I am not discussing in this post is seen front-left in the basement: a weatherproof, adjustable battery charger as discussed in this article devoted to showing you how to make one

The Bag Holding All This Crap

Its a straightforward, cheap canvas MOLLE pouch purchased from Amazon. You can see it in the basement in the pic above, held down by a velcro strap and taking up most of the center section.

Yes it is a pretty big bag, but its also a big bike and fits perfectly in the basement rack.

The Chair

Yes thats right. A freaking chair. This is my newest addition and it got included after I had to stand one too many times in a sun-baked parking lot waiting for curbside pickup. A simple folding 3-corner stool, it can be used either as a seat at the (skateboard) table, or anywhere around the bike while I work. Much better than squatting on the ground or kneeling.

The chair tucks in under the side of the deck using the net I’m already using to hold stuff down on top.

This is a luxury that, realistically, is only possible with a larger longtail bike, or at the least one with a rack you can lash a chair to.

A luxury made possible by an 8-ft long cargo bike with a 40″ deck out back.

  1. Tubeless Tire Repair Kit (from Lezyne)
    I use FlatOut as a tubeless sealant and it should seal holes up to 1/2″ (I already have seen it do its job up to about 1/4″). But stuff happens, and a tire plug kit like this (same idea as the ones sold for car tires) is what you use to seal up a tear in your tire that your sealant doesn’t want to plug, or you just feel better about repairing – these plugs are a permanent fix. A tire plug is not going to make up for torn tire casing cords. In all but extreme cases you can use one of these and forget about the damage the hole made to your tire.
  2. Tube Patch Kit (home assembled)
    I make these up myself. You can buy them cheap, but with all the riding I do, it makes more sense for me to buy a pack of 100 patches and stuff about a dozen of them, a snip of flexible sandpaper and an XL tube of cold vulcanizing sauce into an empty prescription bottle. That bottle has an adult-proof cap and a hard shell superior to the plastic boxes the full kits come with.
    Note that generally you would use this kit only if you are running tubes. I keep it along just in case I meet a fellow rider who has flatted on the road, or the off chance I can make use of it myself

  3. The Ridiculous Tire Lever (from a set of 3)
    This is a tool reserved only for when I am desperate. It is in fact meant for a motorcycle and it is a solid piece of steel. A tool like this can easily damage a bicycle rim or tear open an inner tube so while its included in the kit, its there as a last resort only.
  4. Sturdy, Safer Tire Levers
    I have tried many different tire levers. The Park TL-6.2 steel core tire levers I use these days seem to be the sweet spot between sturdiness and usability, and have never bent or broken on me. Before I switched to these I ran Pedro’s tire levers, which are cheap and smooth enough they pretty much never pinch a tube. But on really stout tire/rim combinations, they like to break, so its always smart to carry more of them than you need, and expect to keep buying them to replace broken ones.

    Before I used those levers, I used the Portland Design Works 3Wrencho. I had three and bent two of them. Also the plastic on the lever side likes to tear away (something the Park levers don’t do).

    Since we are ticking off the also-rans, these Schwalbe levers were pretty good, and don’t take up much space. But they are definitely breakable and the edges on the lever can tear into a tube.

  5. 6″ Needlenose Pliers
    These are your basic, garden variety small-ish needlenose pliers. I have them listed as going in the tool bag, but these are actually in another secure location where I can grab them fast. Why? Because when your tire is hissing air, you may or may not be able to remove the foreign object with your fingers. It could be a sharp bit of steel or jagged glass. Pliers will always be a better choice than bare fingers for grabbing that. Since you have to remove larger foreign objects so the tire sealant can do its job… keep pliers handy. You can jump off the bike, pull out a nail, jump back on again and keep riding like nothing happened.
  6. Long T25 Wrench
    Most folks will have no use for this. But, I use Magura brakes. Magura has decided NOT to honor the M6 hex bolt standard used by the entire rest of the industry, and instead uses a Torx T25 for all their fittings. So I have to keep one with me. I keep the green plastic store card on it so its easier to find in the bag.
  7. Pocket Knife
    Bit of string. Handkerchief. Some hard candy. Pocket knife. Gun. Stuff a guy needs on general principles. Tossed onto the pile. No purchase link because of course you already have several.
  8. Chain Pliers
    Nowadays, chains use master links and don’t need chainbreakers (usually). Sure you can use a bit of your shoe string to separate a master link, and there are other tricks to reassemble one… but the right tool for the job weighs almost nothing and takes very little space. The pliers in the picture above are made by Park Tool. But these cheapo chain pliers work just as well at half the cost. I have a few of both. Make sure you buy a pair that can both separate and assemble (some just do one or the other).
  9. Battery Charger Adjustor (#0 phillips screwdriver)
    Since I carry along a portable, adjustable, weatherproof charger on this bike, A little screwdriver is needed to adjust the pots that govern target voltage and current (amps). Even though the one in my kit is inexpensive, an electrician’s insulated screwdriver like this is overkill. You can find something much smaller, like an eyeglass repair kit screwdriver.
  10. Metric Hex Wrenches
    Even though, on a bicycle, you only need about four sizes, I carry the whole set. For this XL bicycle with an XL toolkit, I am using the extra long ball-end wrenches. But for most of my bikes I use the short length wrench set. This is easily the heaviest tool in the kit, but its also the most useful. I like the USA-made Bondhus wrenches because they are a) cheap and b) made of strong tool steel. They will not round off.
  11. Chainbreaker (aka “chain rivet removal tool”)
    With master links now being in common use, a chainbreaker (and the black art of its use) is no longer essential on the side of the road. However, this tool can be the only one capable of fixing chain issues that decide if you are riding or walking. This mini version by Park is a bit more expensive than others, but it is very small – just large enough to use effectively. And it has something a lot of chainbreakers don’t: a second ‘shelf’ that the chosen few know how to use to unfreeze a link.

  12. Sized, Spare Chain (with fresh, reusable master links in the bag)
    This is the third and largest of the chain-related tools in this kit. A whole freaking chain! With the number of links needed to serve as a proper emergency substitute. In the case of this 11-speed Surly longtail bike, that means I have to use two chains sectioned together to hold roughly 210 links. If I am using the factory-stock 11-speed drivetrain, that means for normal daily riding I run two 11-speed ebike chains. Not cheap at almost $100 for the pair (thats the COVID shortage price. You should bargain-hunt when you don’t need them. I paid about $28 each for mine).

    Why bring a chain? Because we are using a mid drive for power-assist. Mid drives can eat chains. So just as you carry a spare tube and a patch kit… the smart mid drive rider brings along a spare chain. Goes with the territory.

    Since this is an emergency just-get-me-home chain, I use two KMC X11 chains, which only cost about half of the ‘e’ chain.
  13. 4″ and 6″ Adjustable Wrenches
    You’ll want to look at whether or not you need an adjustable wrench at all on your bike. In my case I do have some hex bolts with nuts. Realistically I can get away with just the 4″ wrench and as such I will probably get rid of the 6″ even though it is not especially large.
  14. Brake Blocks
    These are a good practice to use when pulling off a wheel if you have hydraulic brakes. Depressing the lever when the wheel is off the bike extends the pistons way further than they were meant to go, and that can cause the caliper to leak fluid… onto the pads. Thats a disaster that can even mean replacing the brake caliper. You can also use a popsicle stick, a bit of twig off of a nearby tree or a key from your keychain. But the Magura brakes I buy come with these brake blocks for free so I carry a pair along.

    The fact that these stupid things cost almost $10 each to actually buy is ridiculous. I have a stack of them from owning about 6 sets of brakes so that means I could sell them all on Fleabay for over $200?
  15. Fat Tire Hand Pump
    Now that I have the emergency portable electric pump, this one is a backup. But lordy… trying to use a hand pump to re-inflate a flat fat tire is a nightmare! But this unique Lezyne Micro Drive XL portable pump is a modern miracle. It will turn 400-500 pumps into … well, 200. Thats still awful until you sit down roadside and try and pump up a fat tire with 500 strokes of a normal portable pump. Then… only 200 is freaking great.

    Note you can also use 20g or 25g co2 cartridges – you’ll still need more than one cartridge of either of these expensive XL sizes. I have both. But since I have gone to using the portable electric pump, I have taken the single-use co2 inflators and cartridge piles out of service.
  16. Padding
    All of this junk in the bag does two things: a) it does not fill up the bag and b) it rattles around as I roll over things. So I stuff in some padding to help keep things from rattling. this yellow closed cell padding is extra left over from when I lined my Great Big Bags. It serves a second use: A knee pad for when I am down on the ground. Another excellent candidate for this sort of padding is a sized slice of Thermarest Classic padding.
  17. A Nice Soft Towel
    I roll up my adjustable and hex wrenches, plus the Ridiculous tire lever in the towel. Between the padding and the towel, there’s no rattling in the bag when the bike is going over bumps. Plus, a towel will always come in handy somewhere.

A Word On Tool Use

I try NOT to use tools that are half sized for easy packability, or otherwise downsized somehow (particularly multi-tools). When I work on my bike at home in my garage, I try and always use the tools in this bag. The idea is, if I am used to them – and they are as close to full size as is reasonably possible – then I am not handicapped when sitting on the side of the road, trying to do a job with tools that are half-assed.

Epilogue

So… thats it. All of the tools I carry on the bike. And yes thats plenty. But bear in mind this is a big bike and I am counting things in like pumps and chairs and such that take up a fair bit of space, and ordinarily aren’t looked at when it comes to tool kit inventory. I have plenty of bikes where all of the tools fit into a pouch behind the seat, and a frame pump is attached to a water bottle mount. What you see here is the most complete, more better version that, if you have the capacity, should solve all of your typical problems.

oh, and don’t forget to bring along your phone and at least a debit card 🙂

(e?)Bike Flat Prevention

As a daily rider for decades, I have some thoughts on this subject. Mostly along the lines of “no flats allowed, ever”.

This is Part 1. Part 2 focuses on tools to carry. This post was updated on 27 Dec to report the results of the tubeless installation with FlatOut sealant.

So… I try to ride to work every day. My office is 4.4 miles from my residence, but since I am trying to get as much exercise as I can, I may take up to 15.5 miles to get there. Thats all on city streets, which translates to potholes, nails, staples, steel shards, rabid rats and whatever else the mean streets throw at me.

With one break of about 15 years, ending about 5 years ago, I’ve been doing this since the mid-1970’s, and that includes shopping and errands as much as possible. I do actually own a couple of cars, but I’m trying to completely replace them.

I bought this station wagon factory-stock to carry bicycles without needing a rack… things got out of hand (Location: T8A @ Sonoma Raceway)

As such, I have spent more than enough time on the side of the road, dealing with punctured, flat and damaged tires.

There are five patches on this tube. It lasted until Hole #8 was finally too big to fix.

What Not To Do

Be a weight weenie. If you want the most responsive ride, and are willing to work thru flat tires to get it, fine keep your wheels light weight, your tubes ultralight and your tire casings thin. Thats not me and we’ll be doing the polar opposite of this philosophy: going almost literally for Bulletproof.

What TO Do

Everything described here is about flat prevention. I have tried just about every anti-flat tech there is. I won’t be describing all of it and just focus on where I have evolved to today – probably after trying a lot of other things that you are thinking about trying yourself. I am this kind of guy: I use the best. Not because I can afford to throw money at the problem but … because I need to keep rolling; not walking. Nothing sucks worse than flatting on a cold winter night after work (well, maybe getting hit by a car but you know what I mean). What you see here is what I’d call state of the art to keep me on the road and not on the side of it.

Belted Tires

If you have a bike where such tires can fit, these are the Holy Grail. I have found, for instance, the Continental Contact Plus City tire is to all intents and purposes invulnerable. I found it also wears like iron, so you will get lots of miles out of a set. It is E50 rated so its got a seriously sturdy casing.

It is less expensive than the Schwalbe Marathon Plus (which garners all the mindshare for this class of tire) but essentially the same performance: Flatproof. The Contis are cheaper because in part Continental is fighting to take market share from Schwalbe, and partly because they sell into ebike rental fleets where cost is a big factor.

If you can get this tire on your wheels, consider it seriously. Be aware however that it rides hard. In other words it sort of feels like you are rolling on a smooth rock (full suspension would be a big plus). Thats the price you pay for modern, genuinely flatproof tires so either live with it or look to a different solution.

If you have a fat bike, don’t worry about what flatproof tires would do to your ride comfort because you can’t get them for fat bikes. They would weigh a ton.

Thorn Resistant / tough / Smart Inner Tubes

I’ll make this simple: If using tubes, use thornproofs wherever possible. Always. Here again, if you own a fat bike you don’t have to worry about it because they don’t make them for fat sizes. Again because of the colossal weight.

For fat bike riders, scan the marketplace (it changes by the month) and look for the thickest tubes you can get: 1.2mm is the most I have been able to find, and only sporadically. The thicker the better.

What do I mean by “smart inner tubes”? Well, the tubes aren’t smart but you need to be when choosing the size. This is a little counter-intuitive, but you want to always try and oversize your tubes. If you have a 26×2.8″ tire, a 26×4.0″ tube is perfect for it. Why? Because the tube doesn’t blow up like a balloon inside of the tire. In fact it may not be distended in the slightest.

Try blowing a balloon up full and then barely touch it with a pin. BOOM. Now take another balloon and just put a puff or two of air into it, so its barely stretched out. Tap it here and there with that pin. Different result entirely. That same idea holds for tubes. The trick is if you are doing this, you are going to need to work more carefully to get that tube in under that tire safely without it getting pinched under the bead (top tip: Barely inflate it so it is not sufficient to hold shape… that will happen when you are stuffing the tire onto the bead). Once the tube is safely in and the tire is mounted, you are golden.

Oh and, like I said you need to be smart. So when using oversized tubes don’t overinflate the tire past its rated max. You will find that using a bigger tube means it is capable of tearing your tire apart from the inside. I’ve never seen anyone actually do this. Just Sayin’… don’t be That Guy.

DIY Belts Under Tires

There are many such products, with Mr. Tuffy being the oldest of the bunch and arguably the most effective. I started using Tuffy ages ago when it first came out, on road bike tires. That polyurethane formula was damn near impregnable. You did have to fiddle with it a little to get it centered on the tread, but the result was well worth the effort. Sadly I have found that the new-generation Mr. Tuffy that is made for Plus sized and fat tires (XL thru 4XL sizes) never met a nail it didn’t like. My Tuffy 4XL had a zero percent (0%) effectiveness rating at turning nails. I gave it plenty of chances to redeem itself. Its hard to hate the Tuffy people too much for this as a properly thick belt would (drumroll) weigh a ton. Sound familiar?

After decades of swearing by Tuffy, on fat tires I was forced to abandon it for what I consider to be its natural enemy…

Tube Sealant (Slime!)

With Mr. Tuffy failing to deliver in fat city riding (maybe it still works on goatheads), I turned to the most widely available and well known alternative: Slime tire sealant.

Remember… I am riding with tubes and not going tubeless. You CAN use tubeless sealant in inner tubes. I suggest you don’t. I have used both Stan’s Tire Sealant and Orange Seal Endurance Formula in tubes. Both did a great job of sealing the tire once the sealant leaked out of the holes in the tube… but the air kept coming out of the tube and leaked thru the spoke holes (that means a LOT of sealant gooshed out along with the air… that is a mess you need a toothbrush and an hour per wheel to clean up).

To be fair, I did have instances where both sealants worked to seal goathead thorn holes on a tubed tire. But after the above catastrophic failure (lots of goatheads… like 50 per tire) I abandoned tubeless sealants in tubes. They just do not have enough fibers to seal more-stretchy tubes with the same level of reliability as tube sealant.

Get the right TUBE sealant not the green-label tire sealant

Where was I? Oh right… Slime. Tubes. Slime worked very well for me, I found if I could hear the hiss-whack-hiss-whack-hiss quickly enough, I could jump off the bike (stopping first) pull the nail, jump back on and get rolling with enough air still in the tire the sealant could plug the hole. If I wasn’t so fast I might need some co2 to give a fast rush of air so I could get that roll on. And if I did have a leak that didn’t seal up completely, many times it slowed the leak enough I could turn and haul ass straight home so I could do my repairs sitting in my garage, with a soda and a sandwich, rather than sitting on a rock, or on the curb in the sun.

Slime was of course, a mess. A huge mess in some instances. But it worked. However it is only rated to work on holes up to 1/4″ in size. Over that and you could be walking. I’ve had that happen more than a few times (we’ll get to tools and roadside repair in the follow-on post to this one).

Slime is rated to last about two years before it dries out. I’ve had it dry sooner (about a year). Once its dry its worthless. You really should just replace the tube at that point as its really heavy and won’t do you any good any more. With respect to dosage: Rule of thumb from user groups (my experience is the same) is to double the recommended dose. A fat tire bike can and should use a full 8 oz bottle of the stuff. Work down in dosage as your tire size decreases.

While Slime has been knocked off of its pedestal by the following product, that product is I think still not quite fully proven. Thats why I am leaving a full discussion of Slime here rather than ignoring it as old news…

Tube Sealant (FlatOut)

So… Slime dries out and it is only good for holes up to roughly 1/4″ in your tube. Is there something better? There is and its called FlatOut. You want to use the Sportsman Formula for a bike.

Unlike Slime and most sealants out there, FlatOut is advertised to last for “10+ years” which translates to “forever”. It doesn’t dry out.

It also advertises itself as working on holes up to 1/2″ wide. Double the size of Slime and other sealants. I’ve only been using it for several months and about a thousand miles, but it has already sealed a few holes for me… one of which was a piece of jagged metal so large I doubt Slime could have handled it at all.

Again… get the right version!

It was enough to make me start believing the 1/2″ hole claim. Between that and what you will see I say about using FlatOut in a tubeless setup below, I’m satisfied its a more capable product than alternatives.

The label on FlatOut indicates nowhere that it can be used on bicycles of any type. Hearing that others had been using this but nobody could say for sure if it was fit for purpose, I called FlatOut and asked. I got hold of their product manager responsible for bikes. It turns out the Sportsman formula was tested extensively by a manufacturer who made hunting ebikes: for hunters heading out to game stands and blinds in the boondocks. The recommended dose for a 26″x4.0+ tire is a half bottle (16 oz). The recommended dose for a Plus sized tire is about 12 oz. For smaller tires… figure something out or call them and ask for guidance.

So the dosage for FlatOut is quite a bit more than the amount that you would put in for Slime. On the plus side, its a one-time application that should last the entire life of the tire: Set it and forget it.

Tire Armor

This one is kind of a new category unto itself. By and large it has one credible product in the category: Tannus Armour. Basically its just what it sounds like. A barrier that completely surrounds and protects the tire. Flexible enough not to ruin your ride and tough enough to stop stuff from coming thru.

There are a number of sizes. I can say the difficulty of installation can vary widely. My 29er has two slightly different tire sizes, one of which required a trim to fit. Difficulty of installation ranged from difficult to almost impossible. But I got it in. For those two installations I used thornproof tubes underneath and that probably kept me from damaging the tubes during the installation battle. Centering the armour under the tread was also difficult.

For the two fat bikes I have it installed in, both went in much more easily. One bike with 100mm rims and 26×4.8 Vee Snowshoe XL tires went smooth and easy. If anything the Tannus protected the tube completely as I levered the tire bead back onto the rim.

My second installation with 80mm rims and Vee Mission Command 26×4.7 tires was more difficult, but still ok. Part of the reason was the fact the claimed 4.7″ tire size is baloney and the Vee Mission Command is really a 4.3″ wide tire.

A couple of 26×4.0-4.8 Tannus inserts laying out so they flatten after being stuffed in their boxes.

I have heard complaints about the ride with Tannus underneath the tires, but I have not experienced any squishiness or anything else other than an obvious unsprung weight increase.

In the spirit of overkill, I also used FlatOut in the tubes under the Tannus Armour. So far so good no flats. But if you ride long enough you know you can go months with no problems… then your luck changes and you get three flats in a week.

I have also seen photos of Tannus Armour that has, over time and miles, compressed to being paper-thin. I’ll have to see whether that renders its protection less effective. Since as I mentioned above, I like to oversize tubes and the tubes I used under all of my Tannus installations were a bit over. In particular I used Vee 26″ x 3.5-5.0″ tubes which are small enough to work but also capable of fully expanding. So maybe that was a good choice given this potential scenario.

So only time will tell. Still, I have high hopes and believe my expectations are justified.

Tubeless Setup

Running tubeless is a whole different world. Here again, the right choices are simple and for simple reasons. You just have to hear what they are and the benefits should be obvious.

Tubeless Valve Choice

See the metal lip on the bottom of the Versavalve? Valves that don’t have them seem more prone to pull thru or eventually leak.

Any valve with a metal lip on the bottom. There aren’t too many of these on the market. The ones I use are from MBP and the Orange Seal Versavalve. The MBP valves are a bit less expensive but still totally solid on quality. The Versavalves give you more stuff along with the valve. Particularly a valve core remover that screws onto the valve and stays with the wheel permanently, staying right where you could need it as opposed to being *somewhere* but you are not sure what pouch you put it in when you need it.

Why does that bottom lip matter? Because it provides a solid backstop for the gasket that sits on top of it. When you screw down the valve the gasket is smooshed into the rim hole; sealing it to the rim whether it wants to or not. For a different kind of valve with just a rubber gasket glued to the bottom, well if you have to screw it down tight, you could end up pulling the valve clean thru the rim. Also the valve is not held in a vise like it is with a metal lower lip.

Like everyone else on the planet I first tried Stan’s Notubes valves and sealant. I found these valves worked perfectly on the first seal, but over time – especially when adding air down the road – they leaked no matter what I tried (including the standard pliers-on-the-valve-nut bit). Replacing them with MBP or Versavalves solved the problem instantly. Stan’s valves do not have a metal lip on the bottom.

Tubeless Sealant

In the long history of Serious Tubeless Sealant, there are only a couple of mass market players.

Stan’s Notubes Sealant

Ask any internet gathering what sealant to use and you will hear a chorus of “Stans“. And to be fair, the stuff works, and it has been on the market for years reliably keeping people rolling rather than walking. I am one of them. But being the first to market, and not really having noticeably changed over the years, I don’t think its the market leader anymore in terms of performance. You can depend on it, but it has some limitations. For starters, it dries out fairly quickly. The mfr says it will last from two to seven months. Thats not a lot but back in the day it was still a miracle just to have the stuff in the tire with no tubes, and for it to work. In my experience Stan’s lifespan is a lot closer to seven months than it is to two. This may be because I use it in thick-casing mtb tires.

Next, its formula has ammonia in it… and that can be corrosive to your rims. Yes really. Google it for details if you like. Suffice it to say this is not a good thing.

Lastly… remember I mentioned that Stans dries out fairly quickly? Well how it dries is a bit of a subject all to itself. Google “Stan’s boogers” and click on the image results to see what it becomes. This translates to your not only needing to add more sealant, but to also clean out the boogers on occasion.

Orange Seal Endurance

The Other Leading Brand (which seems to be slowly replacing Stans as the de-facto recommendation) is Orange Seal. By all accounts, it works a little better than Stan’s to initially seal up stubborn wheels. Depending on who you ask, it either lasts longer. Or not as long. Yay internet! The Endurance formula is advertised to have a lifespan of six months. I have found this 6-month span to be about right. And when it does dry out… no boogers! It dries into a thin, spread-out, easily removable coating on the inside of your tire. Not enough to throw it out of balance. So every few months you add more and you can ignore cleaning it out.

Orange Seal and Stan’s both seem to last longer than advertised. But both have a finite lifespan.

So which is better?

Both work fine but I give the nod to Orange Seal for convenience and no corrosion issues. One thing is for sure: Both of these sealants are more suited to small pinholes (think goatheads) than they are large tears…. jagged metal and your garden variety construction site drive-by pickups. They just aren’t made for that kind of puncture. Even Slime is better at that sort of thing thanks to its thick gooey fibrous nature versus tubeless sealant’s watery liquid latex composition.

There are some new kids on the block, however, that seem to eat the big stuff up.

Black Ox Sealant

This stuff is amazing. Just watch the videos on how it seals tires up. Whats not to love about it? Its brand new on the market and relatively unknown at present. I contacted the mfr and asked them about the product’s longevity. They responded that they are still determining that (like I said… new on the market). For that reason, I’ll keep an eye on it… and wait and see.

FlatOut

Yup… FlatOut Sportsman Formula. Same stuff as was described in the Tubes section above. On the Amazon product page linked here there are videos of ridiculously large holes being nearly instantly sealed by this stuff. When I discussed the product with them, they noted they have versions for military use that seal holes up to 1.5″ wide (not highway safe but they don’t need to be). I can personally confirm FlatOut sealed a hole on one of my bikes, from a large jagged piece of metal, that I doubt Slime could have handled… Never mind Stans or Orange Seal.

And since this article was originally written I had this experience, which is the worst nail puncture I have ever experienced.  On any tire with a tube or without.  FlatOut solved the problem.

It seems the equal of the Black Ox stuff in terms of sealing hole size, and they say out loud it lasts the life of the tire. FlatOut is also a lubricant so I can see using a bit of it on the lip of the rim helping to mount a tire (instead of the dish soap I use now).

In my discussion with FlatOut I asked about using it as a tubeless sealant… something they had not tried or tested. I had a game plan as a result of that conversation where they suggested to ensure an initial seal at bead seating, paint the bead with FlatOut to ensure that initial pop and seal, then load the tire up thru the valve core as usual.

Did it work? Well, I put it into play the same day this post went live, and here’s the update: Yes. Perfectly in fact. The bead-painting trick was not necessary. the bead was seated as usual with a blast of compressed air, and the sealant added after this just like any other tubeless installation. In the first few days I was losing about a pound of air per day and expecting to need to refill each tire roughly once per week. Since then the air loss has slowed and I have only needed to refill air once in about a month, after the first week. Tires are still holding without any apparent loss.

I’m running 90mm Nextie carbon deep dish rims, 1″ gorilla tape over the center depression (a unique issue with my rims) covered over by 85mm Whisky tape. 26″x4.7″ Vee Snowshoe XL tires on top.

From the looks of it, I have a sealant that never dries out and is capable of handling some of the worst things that can happen to a bike tire.

Exciting!

How Do I Bed My Brakes?

Brake bedding is a process almost nobody does and everybody should. Its a requirement on performance cars that are taken to the race track. Its the same procedure for any type of vehicle.

Preparation

Put your new, fresh pads in. Have a place with lots of traffic-free runoff available. Usually your local neighborhood streets are good. You want an area where you can ride for at least a half mile without touching the brakes, and which has so little traffic you can do the following:

The Process

Assuming this is an ebike

  1. Get the bike up to its maximum head of steam. 25 mph. 28 mph… whatever. Go fast.
  2. Apply ONE of your two brakes with firm pressure. Do NOT slam them on. Get the bike to decelerate firmly but whatever you do don’t lock up the wheel or stop the bike. NO MATTER WHAT. Pads sitting directly over a single spot on a rotor being bedded – or worse still clamped to that stationary rotor – will make the rotor cool unevenly and thats how you warp a rotor in seconds.
  3. When your speed has decreased to, say… 10 mph… accelerate again to your max.
  4. Repeat Steps 2 and 3 15-20 times. Yes this is a lot and that excess is deliberate. Take it out to the furthest reach of your test area.
  5. Return slowly and steadily to your point of origin. Do not touch either brake if at all possible. This is the critical cooling off phase, where you ensure you do not damage your brake rotor after abusing it in the previous steps. At this point your brake rotor should be blackened and smoking. Thats a good thing as it means pad material was transferred to the rotor surface, which it can bond to thanks to your overheating it like you did. Now you have to let that rotor cool. Above all do not stop. Do not touch the brake lever of the caliper that was just bedded, unless you must for safety. If you need to brake, use the other brake that you didn’t use on this current run. But try to pick a spot where you can just do this procedure and safely putter along back to your start.
  6. Repeat Steps 1-5 this time using your other brake caliper.
This rotor was just bedded. Note the discoloration. Immediately after the run it was oily black and smoking. The discoloration fades very quickly.

The Point

What you are trying to do is deposit a thin coating of pad material evenly across the surface of your brake rotor. This will aid in properly stopping the bike, and typically also lessens or eliminates brake squeal, if you have it. To get this material transfer the rotor must be HOT. Thats why we overdo the braking process – to generate that excessive heat.

On an ordinary neighborhood bike, bedding is not such a big deal. On an ebike that gets up to some serious speeds, and may even be an automobile replacement used on city streets, its a lot more important.

A Lightweight Electric Emergency Bike Pump

Got an ebike? Use the big battery you are already lugging around to power a small portable pump.

Me personally, I like to ride around on ebikes with fat tires, and I have several of them. The most recent addition to The Pacific Fleet is my Surly Big Fat Dummy. Its a monstrous cargo bike that, for me, doubles as a commuter. A few nights ago, on my way home from work – in the dark – I picked up a piece of twisted metal in my back tire. Part of the reinflation process (I use Flatout tire sealant so you need air in the tires as they spin around and seal the hole) requires air in the tires.

Because I wasn’t paying close enough attention, by the time I got the bike pulled over and the metal removed, my 26×4.3″ tire was flat as a pancake. Fortunately, I had a painless solution in my panniers and that solution is the subject of this post.

Now, when it comes to bicycle commuting this ain’t my first rodeo. I have always carried a Lezyne portable fat bike pump and it makes pumping fat bike tires tolerable. But its still far from ideal. Life sucks while you are putting in those 250+ pump strokes. And it ain’t quick by any stretch. If your tire is leaking air while you are pumping, the pump may not be a workable solution. As a backup I used to carry 25g co2 cartridges. Two of those monsters would blast a fat tire up far enough, fast enough, to be able to jump back on the bike and roll a half block or so to let the tire sealant do its job. Followed by another 250 pumps to get the now sealed but mostly-flat-again tire back up to rideable pressure.

But… you can only carry so many single-use co2 cartridges, and they are very pricey at that large size. Some time ago I came across a better way to deal with this issue.

The Portable Pump Solution

Wouldn’t it be nice if you could just connect a hose to a small portable compressor, flick a switch and pump up your tire? And the compressor pumped fast enough to outpace even nail-sized holes in your tube or tire? Well, portable pumps like that have been around for quite a while. Small automotive ones connect to your cigarette lighter plug in your car (I have this one in mine). Unfortunately they run on 12v DC. Your ebike is running at least 36v DC and likely more. So you can’t use those. There are plenty of pumps available that have their own internal battery… but batteries are heavy and so are those pumps. Besides. You already have a great big battery on the bike. Why can’t you use it?

Well, you can but you need a pump that can run on 48v. Fortunately they do exist but you have to look for them. Here is the one I use, purchased from Amazon.

Yeah yeah. I know. China. If you can find a USA-made portable pump that runs directly on a 48v power source, feel free to drop me a line and I’ll add it in here. As it stands, there are only a very few such pumps readily visible on the market and they are all from the Far East. I have used them a half dozen times without incident. Will they last forever? Good question. I do still carry my hand pump just in case.

DIY a Battery Plug

As you may have noticed from the pictures, the pump has an odd plug on it. What you want to do is plug straight into your main battery. To do that you are going to have to get your hands dirty. From here on, I’ll give a step-by-step on how to make this happen.

Step 1: Snip off the plug

View of the cut off plug and spread pump wires

This one is pretty simple. Take a pair of scissors and snip off the plug.

Step 2: spread and strip the wire ends

You can see the wire strippers I used in the picture above. I used the 18ga hole, and I left about twice as much bare wire as I ordinarily need for a crimp connector. These wires are so thin I want to fold it back so the butt-end connector I will use has more material to grab onto.

Step 3: Determine which wire is hot

Yeah thats right. The plug gives us no indication which is the hot wire, so we have to figure that out for ourselves. What I do is bring out a bike battery and connect a bare XT90 pigtail to its output cord. This in turn gives me a bare, hot lead that I had sure better be careful with, and so must you.

View of the bare hot wire setup
Those are bare live wires on the end of that pigtail! Be careful.

So the next move is to bring the bare, stripped pump wires up to the bare battery wires and – after turning on the pump, touch the wires together to see which combination fires up the pump. Getting it wrong will not hurt anything. Just try the other combination if your first try doesn’t work.

View of the marked hot wire next to the live bare wires
When you know which wire is hot, mark it. I used a bit of red heatshrink pushed over the wire end.

As soon as you have marked your hot wire, disconnect the pigtail so you don’t have bare hot wires waiting to say hi to the cat.

Step 4: Make the connection

My choice for this job is a combination of the following:
1. Marine adhesive butt-end connectors
2. Adhesive heatshrink over the individual wires on each side
3. Adhesive Heatshrink over the butt-end connectors

I’m looking to make a reinforced and solid connection since the wires on the Chinese side are pretty flimsy. Here’s what it looks like after I have crimped the wires together, but before I have done the final heatshrink of first the connectors, and then the sheathing over them.

overall view of the connection prior to heatshrink activation

Notice the different colored rings on each side of the connections?

Closeup view of the wire connectors

I used ‘step down’ connectors because the pump side wire was so much thinner. 18 gauge if we are being generous and probably 20 gauge if we are being accurate. This is why I folded the pump wires over to double them up. Which will only give more material to the crimp itself. The true strength of the connection comes mostly from the connector ends, plus the adhesive sheathing over top of that.

Step 5: Activate the Heatshrink (last step)

Finally, heat shrink the connectors first, then the individual wire sheaths, and finally the connector sheaths that also go over top of the individual small wires. BE CAREFUL on the pump side as the pump wire is very intolerant of heat and will happily melt on you even with mild heat. I use a heat gun set to low. You could get away with a hair dryer. I wouldn’t want to use an open flame due to the fragility of the pump wires.

View of finished plug
The layered heatshrink is not particularly flexible but it greatly strengthens and stabilizes the connection.

Epilogue

View of finished pump
I have added a Presta adapter to the end of the pump hose. Because I opted for a strong rather than a flexible connection, the battery plug no longer folds into the cubby on the pump.

At this point we just toss our pump into a bag to protect it from everyday rummaging, and that bag into our panniers. We’ll all hope we never have to use it, but we will of course.

View of pump inside carry bag

How To Ride a Mid Drive Ebike Without Breaking it

With few exceptions, everyone who can ride a bicycle already knows how to ride a hub drive ebike. Not so if it has a mid drive. Particularly a powerful one that can tear your chain apart. Here is how you flatten the slope of that learning curve.

“Mid Drives For Dummies”

This article is based on a portion of this post where I discuss the strength and weaknesses of different types of ebike motors. I link that article many times in help discussions, but usually only for the part about how to ride a mid drive without excess drivetrain wear, mechanical failures etc… so I am creating this standalone post on the subject… and stealing liberally from the original.

Mid drive motors on ebikes are very common in the production-line, name-brand-manufacturer ebike world. Its safe to say they dominate the industry for eMTBs. Why is this?

Hub motors power the bike thru the axle, so they are single-speed: their motive power has nothing to do with the chain, chainrings or cogs. Try taking off your chain and then go pedal the bike around. Pedal assist will work just fine. The chain and chainrings are only there for you to slug it out with; the motor couldn’t care less.

Since hub motors are single-speed, that means they are not happy climbing hills… for the same reason your life sucks trying to do the same thing with no gears. The only fix for this is to run thousands of watts thru the hub (we are talking 3-6kw or more, which is approaching e-motorcycle territory).

Unlike hub motors, mid-drives power the bike thru the drivetrain. They use the gears just like you do. This is a good thing for the same reasons its good for you.

Only a fanatic or a penitent rides hills on a single speed bike. So how is it desirable to do that with an electric motor? Spoiler Alert: it’s not. A single speed hub motor is often strong enough to help get you up that hill. But its not happy doing it, and its not good for the motor or (if it has them) the gears inside of it.

If you have only had a hub drive ebike you won’t realize just HOW unhappy until you take your first proper ride up a steep hill on a mid drive ebike. Get it in the right gear from the start and the bike simply doesn’t care that its going up a hill. It scoots right up without breaking a sweat.

The benefit is multiplied when you look at a mid drive’s motor specs. Usually they are more powerful than a hub drive by a wide margin. A typical hub puts out 40-60 Nm of torque, with a few going up to 80 Nm. Production mid drives usually start there as the bottom end. Aftermarket motors commonly put out 120-250 Nm.

The Cyc X1 powering my Guerrilla Gravity Smash delivers 180Nm of torque to the drivetrain. Couple that to the small front chainring and huge steel gear cluster in back: you can climb a tree no problem.

So What?

Well, if you aren’t familiar with what it means to have X Newton Meters of torque going thru your drivetrain, lets use the more common (but functionally useless) measure of watts:

  • That 180Nm motor pictured above has a peak output of 3000 watts.
  • A BBSHD or a Bafang Ultra peaks at 1750 watts (peak power on the BBSHD can also be maintained continuously so its REALLY a beast).
  • A 48v BBS02 is about a thousand watts.
  • your typical street-legal pissant EU motor is rated for 250 watts (pssst… the manufacturers are now all cheating on this. Don’t tell anybody).
  • A normal cyclist on an analog bike is capable of putting out roughly 300 watts over the span of a few minutes.
  • A professional sprinter/mutant can hold almost 1000 watts, but only for a minute or two (thats not enough to make a slice of toast).

ohhhhh…

Yeah ‘oh’ is right. Your mid drive is pumping a metric shipload of power thru your drivetrain. That power is likely more than standard bicycle parts were meant to handle. So how do you have a motor this powerful (its not as much of a boost as the math makes it sound like) and not bend, break or snap stuff?

It Ain’t Hard To Do Right…

…but you gotta do it. Here then are the rules of the game when riding a powerful mid drive motor.

The Short Version: Keep the motor spinning.

Now the Long Version:

Keep The Motor Spinning

Here’s a basic tenet that is true of all electric motors: Electrical power goes towards turning the motor and producing forward momentum. If there is resistance – which keeps the motor from free-spinning – then instead of forward rotation, the electrical energy is converted to heat. Mid drives have so much power that they can get really hot, really quick if not allowed to spin up. But they are so powerful, they might not just stop at generating heat.

Lug a powerful mid drive and the torque that is pouring out of it could tear your chain apart – if it can’t rotate it thanks to resistance. Or, you might discover what it means to ‘taco’ your front chainring or rear cog. If your sins are not quite that egregious, and you just lug it gently enough to not tear something apart, then within the span of a single ride it can ‘peanut butter’ the nylon gears inside your motor; bricking that motor and potentially requiring you to carry the bike anywhere you plan for it to go. 

Thats very, very bad. So don’t let it happen. Here’s how we do that:

When Coming To A Stoplight, Downshift!

Always. Either that or stay in a gear that is in the middle of your cluster so when you start up again, the motor does not lug itself. You spin up quickly, without any brutality being visited on the drivetrain.

From a standing start, a mid drive will slowly tear into the cassette body, or damage the pawls inside. this will eventually tear the freehub apart and kill the hub. Which means you get to build a new wheel.

On the left: 1000 miles of use… and I was nice to it! But this freehub body was still torn into a bit. What does yours look like?

If you downshift so the motor doesn’t tear into your drivetrain when you start back up again, you’ll be fine. So remember: downshift before you come to a stop.

Sidebar: This is a gear cluster. Each wheel is a 'cog'. Smaller cogs are higher gears (you go faster). Bigger cogs are lower gears (slower, distributes torque, gentler on the chain). This cluster is a SunRace CSMX8 11-46T: The smallest cog has 11 teeth and the largest has 46.

When You Want to Go Faster, Upshift

When working a mid drive, just like driving a classic sports car, you have to ‘row’ through the gears, both slowing down and speeding up. Wait until your motor is maxed out before you kick it up a gear (up = a smaller cog in the back). Chances are good its going to be smarter to stay one gear down from what you would have used without a motor (down = a bigger cog in the back). Why is that? Your bike will spin up to the same top speed on its next-highest gear (the next-bigger cog in back) as it will the highest one: But it will get there faster if you let it use the bigger/higher cog. Mid drives are like that, especially when going fast on the street. Here again we are going back to not lugging the motor, and letting the mid drive spin faster than you ever would. Unlike you who has to do the pedaling, they like it that way.

Again thinking of your mid drive ebike as if its an exotic sports car with a manual transmission: In between each gear you need to let off the power (i.e. the clutch), shift and hit the accelerator (the throttle). If you have a gear sensor you will not have to worry (officially) about the ‘clutch’ part as that will be safely done for you.

Note that above, I am talking exclusively about when you are using the throttle. If you want to pedal the bike thats no problem… just use pedal assist and set your power level to a lower setting. Take care not to overdo the boost, and keep your legs spinning fast via smart gear choices – just like on a regular bicycle – so you never lug the bike with slow pedaling up a steep hill

If you are pedaling slow on flat ground, or downhill, you are not providing resistance to the motor or pressure on the chain. So there is a lot less to worry about there insofar as cadence or lugging the motor is concerned. You do however need to make sure you ALWAYS do the following no matter what the terrain is:

Do Not Shift Under Power

Even if you have a gear sensor. Thats right I said it. Don’t trust the gear sensor unless you are forced to. Lift for just a sec and do your shift.

More Specifics on Mid Drive Shifting here:
"Do I Want A Gear Sensor?"

Shifting while pouring huge watts into your chain is an ugly thing.  You will recognize your mistake the instant the result hits your ears.  It won’t kill the chain outright, but as you hear that chain smash from one cog to another you will know your bike hates you very, very much.

If you treat the gear sensor as a fail-safe rather than taking it for granted, you will be much more likely to avoid disaster. Now, as you become familiar with riding your mid drive and how it behaves, you will naturally figure out how to push it to its limits and minimize that power blip when you shift. You may even get smart enough to do without the blip entirely and just shift full throttle. But for your first few weeks of riding this thing… treat the gear sensor as a backup, not the default.

Here’s a technique you want to learn as part of your education on operating a mid drive: Using your brake lever motor cutoffs as your clutch: Just slightly actuate the levers so the cutoff kicks in, but the pads don’t engage. Lift when the shift is finished. You can stay on the throttle or keep pedaling while doing this so the process is near-seamless.

Many ebike levers have this ability built into them. Magura MT5e levers have a mid-lever hinge that lets you touch the brakes and engage the cutoff without any pressure making it to the caliper.

Check out the little pin in the middle of this ebike brake lever. That is a hinge to give the lever a *touch* of give so you can cut the motor off without engaging the brakes.

Keep Chain Alignment As Straight As You Can

Mid drive motors tend to work in a lot wider range than humans do.  So you can leave the motor in a gear that would be too low for your cadence and let it spin away like crazy… it actually likes it that way.  So, this piece of advice is partly about how you ride the bike (i.e. what gears you let it sit in) but also about how you build it if its a DIY effort. 

You really only need three or four gears in the middle of your cluster on a mid-drive-powered ebike.  You want them to be the ones that let the motor spin fast.  You also want the cogs the bike is happiest in rpm-wise to not be cockeyed, front to back (i.e. bad chain alignment). So regardless of whether you built this bike or you just bought it, when hammering on the power don’t do it when the chain is yawed to an extreme.

On an analog bike you can get away with a lot, since you are only feeding back 150 watts to it.  Feed it 1500 and that sideways-skewed chain will become a saw and chew right through your front chainring and rear cog teeth.  Be smart when you shift your gears (or when you build the bike in the first place).

If this is a DIY build, learn in your first outing or two whether there are any problem gears you should stay away from.  There are all sorts of offset chainrings (and 1mm and 2mm shims) available on the market. They cost money, but spending that money now means not spending it later after you have walked home.

Build Smart

If you bought your bike manufactured with a mid drive installed from the factory, this part has already been taken care of. If you are building an aftermarket conversion, you will have to buy components that are strong enough to handle the punishment your 1500w+ motor will mete out. Almost 100% of internet whining about mid drive reliability is from builders who fail at this stage.

While a lot of this article is repetition as I stated at the beginning, this is one place where I will just refer you to what I have already written elsewhere. Its only applicable to DIY builders so if thats you, go to this link and scroll down to the Mid Drive Motors section.

Wrapping it up

If you build with appropriate components, and ride it smart, even a high powered mid drive will essentially last forever.  Yeah sure you will wear out the chain and rear cluster in say three thousand miles, the smallest cog in half that, and the chainrings in 10.  But thats peanuts considering how many miles you put on the bike.

And you will have an absolute blast doing it!

Quick Release, Easy-Carry Ebike Battery Setup

Parking your ebike outdoors all alone? When shopping, my cargo bikes are locked but out on the street… but the battery goes in with me. Here’s how I do it without people thinking I am carrying a bomb.

Yes You Can Take ‘it’ With You

An ebike used for utility purposes is, by its nature, going to be left out a lot. You go to the store, load up a shopping cart, come back and fill up your saddlebags. You really want all the parts on the bike when you left to still be there. Especially after loading on 50 lbs of cat food, Oreos and diapers.

The most obvious way you keep the bike itself is to use a good locking strategy. I’ll save that for a different discussion. This time I will focus on how I protect the single most-expensive component on any ebike – the battery. Not by locking it up, but by making it so I can do a quick grab and carry it in with me.

By removing that battery, we are making that big heavy ebike into a boat anchor, which we can hope makes it at least a little less attractive to thieves.

Size (and Shape) Matters

What I am describing can be made to work with any shape battery, kept anywhere on your bike. What you see here works best with a squarish, oblong battery. In the pics below I am using a 17.5ah Luna Storm battery, which is pretty big and heavy (in part thanks to its powerful but not-so-energy-dense 25R cells). More likely, if you have a similar heat-shrink battery pack like this one, its quite a bit smaller and lighter.

I also keep a Luna Wolf Pack battery like this and do not use its magnetic mount. The battery is easy to quickly get off that mount, but leaving it inside of a bag like I describe here is, overall, easier than stuffing it in every time, taking it back out and so on. For packs like this (Wolf, Shark, Dolphin etc.) you could certainly bring a small pack and put it in/take it out as a part of your routine.

There’s more than one way to skin this cat, so what you see here is just a jumping off point.

Lets Get to It

This is the battery in its bag, just like it would be if I rolled up to the local Costco.

Ignore the charger cable in the front. I took this pic at work in my ebike garage.

If we zip open the bag, we don’t see a battery. We see an inner bag, along with that charger cable extending thru to the rear. The controller cable is in there too just out of sight (look closely and you can see it)

If we look inside the bag, we see the battery charge cable is in fact an extension running from the rear of the interior bag up and out the front. The motor cable – an XT90S connector – also has a short extension between the battery cable and the motor cable. The idea is this: when routinely, frequently detaching and reattaching the cable, if there is any wear its on a cheap, replaceable extension and not a critical, live/hot cable coming directly off the battery.

Disconnect the cables and give a tug to the inner bag. Here its shown halfway out but you will just pull the thing out in one motion.

When I leave, I generally put the cables back inside and zip it only halfway-ish, so its obvious there’s nothing worthwhile to steal inside. Move along.

Annnd here we are. the cables are shown sticking out of the inner bag. You will want to cap those for safety’s sake. I use cheap plugs I got a bagful of on Fleabay for a couple bucks.

And yes… as-is I have had someone ask me “what is that a bomb?” … only half joking and ready to clock me if I make a sudden move. So stuff the wires in the bag so they don’t stick out.

Tell the Bomb Squad to cut the red wire

Done! Wires are capped and stuffed into the bag in 5 seconds. The sling strap goes over your shoulder for easy carry. I just lug it to the nearest shopping cart and put it in the bottom rack with my helmet and off I go.

This is just a 3L hydration bladder pouch, the sling strap that comes with it and a shoulder pad I swiped off another strap I wasn’t using.

Parts

Its a really short list with one item on it.

Hydration Carrier

You see above the Blackhawk S.T.R.I.K.E. carrier in use. Purchase link is here. Yes, the name is a tad ridiculous. But this pack is minimalist and is just durable cloth with no insulation or padding. Its easier to stuff into a confined space. Mine came with a super sturdy velcro sling strap.

Another that is well made (and a tad smaller for a tighter fit is sold by Voodoo Tactical. It comes with thin backpack-style shoulder straps that don’t take up *too* much space in your triangle bag and are not enormously fiddly when stuffing back in there.

Another one I use (with my Luna Wolf pack) is this government-issue USMC carrier. The link is to a brand new unit. I got mine surplus and cheaper on Fleabay. This pouch has no straps (you can clip on your own from a duffel bag if you like) and it is the opposite of the Blackhawk carrier: Its thick and padded. I can still stuff it into any triangle bag I have despite this. Its great as a protective layer over a battery.

Wrapping It Up

There are lots of ways to do this. How I do it is no big deal. Key takeaway here is to find a method that works for you so you can swiftly grab the battery, go off to your next adventure and then come back and plug right back in again.

Surly Big Fat Dummy Wideloaders

“Wideloaders” are a load-supporting framework that sit level to the rear axle on a cargo bike. They are not made for the Surly Big Fat Dummy, but the frame has fittings to attach them. Here is how I made mine with no special tools or fabrication skills.

The Surly BFD Project Menu
Prologue
Episode 1: 138L (each) Panniers… Seriously?!
Episode 2: Big Fat Dumb Wideloaders (You Are Here)
Episode 3: Kickstand Kaos
Episode 4: Add a Flight Deck. And a Hangar
Episode 5: Leftovers

Do It Yourself (its not like you have a choice)

Wideloaders go hand in hand with the use of XL panniers like Great Big Bags 2.0. If you have Wideloaders that your bags sit on, it lets the frame support part of the load directly and increases carry capacity. So, for my Surly Big Fat Dummy, I definitely wanted these.

Big Fat Problem

The Big Fat Dummy is a unique frame design. It is similar to the Surly Big Dummy. There’s a family resemblance to XtraCycle-compatible frames. There are many factory-original and aftermarket options for those bikes, but similar is not ‘identical’ or even ‘compatible’. BFD owners figure this out pretty quick.

The image below shows a bright green Surly Big Dummy frame overlaid onto a Big Fat Dummy frame. The front wideloader mounting points are lined up (look for the frame hole/white circle on the bottom tube extension, aft of the bottom bracket). This overlay makes it clear the rear mount holes don’t match. You need Wideloaders designed specifically for the Big Fat Dummy frame.

Image credit: Surly Bikes (click image for original page)

Unfortunately that product doesn’t exist. If you want them, you make them. So I did.

Lets Get Started

Your wideloaders are going to mount in the front and rear hollow tubes that already exist in the frame. These cross-tubes are both 7/8″ Inside Diameter (ID), so you will need to buy 7/8″ Outside Diameter (OD) tubing. Luckily, this is widely available. However you will find a variety of thicknesses, heat treatments and alloys. I’ll pass along what I think is the best to use, and, well, what I used. I’ll let you decide whether or not to follow my lead or make some changes, as what I did turned out to be really REALLY heavy duty, but also heavy for what it is.

What about copper tubes?
You can go a different way and use copper tubing and soldered joints for a very, very cool look. But its no lighter than the alloy and screw-together approach I used, requires semi-permanent solder connections and a whole lot more effort (and money) to put together. It will look incredible when its done though. If you go this route yourself, note that copper tubing is designed to have a specific liquid flow rate, so it is measured via its Inside Diameter rather than Outside. So while I am using 7/8″ tubing, your typical copper tubing that fits is going to be known as 3/4″ tubing. The deciding factor to proper fit will be wall thickness so pay attention when doing your buying.

Parts List

27.49  6063-T5 7/8" OD x 7/16" ID (0.219" wall) x 8 ft
43.00  AL7005 22.2mm OD x 1.8mm wall x 1000mm len (qty 4)
43.96  Stainless boat hand rail 90-degree elbow (qty 4)
43.92  Stainless boat hand rail Tee (qty 4)
12.88  Stainless Mil Spec 0.89" ID Washer 10 pak
11.98  2:1 1" heat shrink - 25 ft
14.98  Reinforced 7/8" ID garbage disposal hose
       (10 ft) (qty 2 optional)
 3.00  Stainless steel M6 socket caps
       flat washers
       nylock nuts (2 ea)
29.74  2" x 30" hook/loop cinch straps 6 pak (qty 2)
31.90  Ratcheting tube cutter (optional)
29.99  Inner/Outer Pipe Reamer (optional)
10.99  12" Flat Bastard cut file (optional)
----------
In original build but replaceable with disposal hose
----------
12.74  Corrosion resistant sleeve bearing (2)
 6.24  Abrasion-resistant cushioning washer 10 pak

Total project cost (not counting shipping): About $230.00. $304 with the optional tools added in.

Notes on the Parts List

Tools

  • Your life will be a lot easier with the tube cutter and ratcheting attachment. It makes doing the job of making repeated cuts easy and gives a perfect cut every time.
  • Once you are done cutting a tube, even if done with the tube cutter it will still have sharp and somewhat bulged edges. Use the reamer to give a finished bevel to the outer and inner edges. You could use a straight file, or a tiny long round file, and eyeball it until done. But this specialized tool does a quick, clean job in just a couple seconds.
  • You need a few passes with a flat file on the flat of your cut pipe to smooth out the surface after the cut. Well actually you don’t need it, but between this Flat Bastard and the reamer you will never cut yourself on a sharp edge. And yes I picked this file to link in because they called it a Flat Bastard (any bastard cut will do, or even a fine cut).
  • If you choose the 6063-T5 tubing you likely also will need a hacksaw. I am not linking one or giving a price. If you don’t already have a hacksaw in your toolbox you may as well pull your toga up over your head and accept your fate.

6063-T5 Tubing

This is an extreme-duty choice. With a wall thickness of just under 1/4″, it is heavy stuff. But use two of these as thru-frame cross-pieces and your wideloaders will not bend even with well over 100 lbs of cargo loaded on them. My record is about 160 lbs (72.5 kg) and I was glad I over-did it, especially when hitting road bumps… an overloaded bike that weighs over 500 lbs with the rider onboard is a runaway freight train: you have to just hang on and bulldoze thru things you would otherwise avoid on the ride home.

This tubing is too thick for the tube cutter. You can use the cutter to get it started, then switch to a standard-issue hacksaw, or find some other method of cutting this very thick tubing. Me, I went cutter+hacksaw. It worked fine, but was something of a pain in the ass.

AL7005 Tubing

This stuff is sold in metric measurements since it is coming from a bicycle frame tube supplier, but the measurements translate to 7/8″ OD tubing with walls about 0.071″ thick, in individual lengths of 39″. That is roughly the thickness of bicycle handlebars. As aluminum tubing goes, its thicker than most reasonably-priced alternatives, which is good. Its also much lighter than the 6063 I used for the crossbars. You can sub in two tubes of this 7005 for crossbars less insanely thick than the 6063. They will still be strong.

The pipe cutter makes life a whole lot easier.

Stainless Boat Rail Fittings

Being thick stainless steel, these marine boat fittings are all about durability and strength. Also they are heavy as hell for bicycle components. Once again, this is a job where weight weenies need not apply. You put these suckers on and screw down their grub screws into the softer alloy tubing and they will hold fast, regardless of whether or not you forget how wide the bike is and walk it into the corner of a wall … in that contest, the wall loses.

hmmm… This piece is not on the parts list

Worth Noting: In many of the pics here, you will see I am using tee and quad-fittings that allow more connections than are necessary for the project in this post. Thats because I was building with an additional integrated center-mount kickstand in mind. We’ll save that for a separate article. Stick to the parts in the parts list to just build the wideloaders.

Garbage Disposal Hose

What in the hell is that doing on this list? Fact is, I didn’t build my wideloaders originally with this in mind. You will see many pics here with the older bushings, washers and heatshrink tubing for coating. I got the idea a few months afterwards. Covering the outer tubes in thick tubing permanently dingproofs them and helps protect whatever I lean the bike up against.

Once I found cheap PVC garbage disposal hose, I realized I could further use it to replace almost all of the washers and spacers in the build.

Originally I used 3 layers of cheap heatshrink to cover the tubes, plus bushings and washers. The garbage disposal tubing replaces all of it and saves about $30 on project cost.

Since I had already built mine, I personally only used the disposal hose on the outer facing tubes, leaving the two inner lengthwise tubes covered in heatshrink. However, you could buy two units of the disposal hose and sheathe all of your tubing with it. Simpler, looks kinda neat and about the same cost.

25 feet of Heat Shrink

The need for this stuff was largely eliminated with the use of the garbage disposal hose. However, you still need about 2 feet of it (20″, actually) to line the crossbars inside the frame. In a cruel lesson in Chinese capitalism, 10 feet of 2:1 heat shrink is one cent more expensive than 25 feet. So what the hell lets get some extra. Also, the 3:1 that is widely available in shorter lengths is the marine grade with adhesive glue inside and thats too thick for our crossbar liners. So… maybe its not a bad idea to check your local hardware store before buying this stuff. Its not going to be any cheaper but if you don’t want an extra 23 feet of 1″ heat shrink tubing sitting in a drawer for the next decade, a local buy might fix that.

The Sleeve Bearings and Washers

I used these in my original build and you can see them in all the pics. They were optional then and, later on when I discovered the garbage disposal tubing, were replaceable in the project. The one remnant I would still use regardless are the “mil spec” steel washers. Why mil spec? They are cut to closer tolerances than ordinary washers. If you want a really snug fit to your tubing, with a not-gigantic OD to go along with it, these washers are pretty much the best option.

If you use the disposal hose to replace the cushioning washers and bushings for spacing, I would still use the mil spec washers up against the frame to ensure the most solid contact possible.

Set the fastening screws facing UP on your tee fittings. If they come loose you stand a chance of seeing the problem before they become UFOs.

Construction / Assembly

NOTE: While I often go into painful levels of detail, I won’t be specifying measurements on cut dimensions. I don’t want you taking my word for what works on your bike and your fittings. I’ll make one exception to this: The width of the crossbars, since that requires some thought and is worth discussion. We’ll get into that below.

Step 1: Cut the Crossbars to Desired Width

This is maybe your most important project decision. How wide do you go? Your answer will help determine what you bump into while trying to move the bike around, or smash into as you try and negotiate a narrow passageway (like a shared use path entrance). At a glance, a good rule of thumb for maximum width would seem to be ‘no wider than your handlebars’. That will mean whatever you are riding thru, if your handlebars fit then most likely the wideloaders will not snag, either.

While you are figuring this width out, know the center section of the Surly Big Fat Dummy is exactly 10″ wide.

The BFD 26″ bike in Bliolet uses Answer ProTaper bars; 810mm wide. That works out to almost 32″ of width, give or take. So knock 10″ off of 32″ (the width of the center section) and divide by two. Following the no-wider-than-handlebars thinking, you would have wideloaders 11″ wide on each side. The 1-piece crossbar would be a total of 32″ in width.

Thats way too wide. Forget about the handlebar rule. It sounds like a good thing to have that nice big shelf, but it will be VERY ungainly to have that much hanging off the side. Don’t even think about it. Another issue is trying to get the bike thru a door. Think how much fun it will be to get a bike 32″ wide (and almost 8 feet long) thru a doorway that is commonly no more than 36″ wide. And some doors are 32″ wide.

I settled on a bar that is 26″ in length. Subtracting the 10″ center section and dividing the remainder means I have an 8″ crossbar extension. The elbow will extend my width a bit more. So figure in the end, I have about a 28″ wide rear platform. Here again the dictating factor is getting thru a doorway (I park in a garage every day and bring the bike in thru a door at a sharp angle).

If you are unsure, its better to guess on the too-wide side. It is a whole lot easier to file or cut metal off than it is to put it back on again (fun fact: this is also the First Rule of Gunsmithing).

Step 2: Drill And Fit the Crossbars

This part is easy. I took the 26″ cut crossbar and measured it to 13″. Then I used a red Sharpie to mark the center. In the pic below, a test-fit, you can see the red mark coming thru the centered frame hole. Once you have confirmed the spot is in the right place (measure!), pull the tube out and drill a centered hole straight thru at the spot of that marker dot. Drill large enough for an M6 bolt.

Finalize Crossbar Fitment

Once you have drilled that hole you can fit the tubing right inside the 7/8″ ID frame tubing and attach the crossbar, centered exactly to the frame and fixed in place with a stainless M6 socket cap bolt, nylock nut and a washer on each side. However, there will be a small amount of play between the crossbar and the frame, which means these things will rattle. We can’t have that.

  1. Add a length of heatshrink – cut to a 10″ length to the center section of the crossbar. Using your heat gun, shrink the tubing so it sits tight on the very center of the crossbar. The hole you drilled will be a clearly visible depression on the bar.
  2. Get a bit of dishwashing liquid or similar non-permanent lubricant and smear it over the now-snug heatshrink.
  3. Push the crossbar into the frame. It will now be very snug thanks to the added diameter of the heatshrink. The dishwashing liquid will let you push the bar into the hole while leaving the heatshrink attached and placed on the center. You may have to experiment with lesser lengths of heatshrink as it might want to be pushed back by the frame as you get further into the frame and closer to centering it (I had to spiral wrap sandpaper on a wooden dowel and run it thru a few times to debur the interior of the frame. If you already own a cylinder hone of the right size this is a place you might carefully use it).
  4. As you push thru, when you see the depression in the center frame hole where heatshrink sags in under your drilled bolt hole, stop. Now just shove the washer’d bolt into that hole. It will break the heatshrink on its own. Clamp in with the nut on the other side.
  5. Repeat the process with the other bar.

Your crossbars are now tightly, permanently fit. Bolted into the frame and lined with a thin rubbery material, they will not rattle.

Step 3: Fit the Tee’s and Inner Lengthwise Bars

Now that the crossbars are bolted in, its time to attach the inner bars. What you see in the pic below is a test fit where I hadn’t yet finished Step 1 above. The crossbars aren’t yet bolted in. But the procedure is well-illustrated. Loosen the grub screw on your front tee. Stuff the bar into it until it stops. Measure how far it went in. Position the bar atop the rear tee. Its going to go in the same distance, so measure accordingly. Thats your tube length. Cut to size and if it fits, do one more like it for the other tube on the other side.

To do the actual fitting once the tube is cut, loosen the grub screws in the tees so they are still in place, but do not intrude at all into their opening (or remove them completely and stash in a safe place). Place the cut tube into each of the tees. Make sure the grub screw holes are facing up for both tees. Now slide this assembly over the attached crossbars and slide them inward to their final position. If they do not slide smoothly to the interior – if they hang up halfway down the crossbar for instance – you may have cut your tube a bit too long and need to make a second cut, or do some filing if its a near thing.

This is a good time to mention that for placement on the drive side, you want the inner bar to clear the derailleur when it is on the smallest cog, with some extra room to spare that allows for frame flex (although these wideloaders can’t help but stiffen the frame). Keep this in mind when you are deciding final placement on the drive side inner bar.

When the tees and tube are sitting, unbolted, in place, move on to the next step.

Position the inner tube on the drive side so it doesn’t hit the derailleur in high gear.

Step 4: Fit the Elbows and Outer Lengthwise Bars.

Repeat the process from Step 3 for the outer bars. This time measure fitment with the 90-degree elbows. In the pic below note I had a tee in place in the rear – I was considering doing an extension out behind. In the end I thought an 8-foot-long bicycle was plenty and squared it up with an elbow.

After cutting the tubes, do the same procedure as in the previous step with regard to placing the bar and elbows onto the frame without permanently attaching anything.

When the tubes are all cut, everything is lined up and you know it all fits, its time for Step 5.

Step 5: Add The Bumpers / Final Assembly

Since you didn’t actually tighten anything down in Steps 3 and 4 above, its easy to take it all back apart. Do so now, leaving only the crossbars, which should already be firmly assembled. Your next moves, in order:

Straighten out Your lengthwise (long) pieces of Disposal Hose

OK this is out of order because you should do this a day or two in advance of your actual build party. You want to give the hose some time to uncurl itself.

Off the shelf the hose is kind of a pain in the ass to deal with, considering between two and four lengths of it need to be cut fairly precisely to a bit under a 3-foot length. I found two ways to deal with this (and used both of them). First, the easiest way:

If you have some long lengths of 1 1/2″ hard PVC pipe laying around, stuff this curved tubing inside of it. Let it sit like this. You can do it with 1 1/4″ PVC but its a tight fit and really tough to get it thru in lengths any longer than about 3 feet.

If you don’t have PVC, use your actual wideloader tubing. If you are following the parts list above you have four individual tubes that are longer than you will need. Work with those. This is going to be a snug fit and require some elbow grease to stuff it on there. I stuffed on a couple of feet, then dripped on some WD40 and let it penetrate (there’s a bit of slack to let it dribble in) and just worked it. Once I had used enough of it (used… not over-used), and let it spread, they slid on and off easily. But it takes a little time and patience. Afterwards, wipe off the tubes. I didn’t worry about the residual WD40 inside the hose itself. Just enough remained to make final assembly straightforward.

I let this sit overnight and added a length of PVC on the still curly side to help straighten the rest of it

Cut spacers for frame-to-inner-tee fitting

You will cut spacers to desired lengths from the disposal hose. On each corner, use one of the milspec washers up against the frame for a total of 4 washers needed. The milspec sizing will give the washer a nice even fit.

On the build you see pictured, I used 1.5″ corrosion resistant bushings in the rear for a nice look and exactly the spacing from the frame I wanted. In the front, I stacked three of the rubber cushioning washers, sandwiched by two milspec washers. This front scheme was a leftover from earlier plans that did not include bolting in the front crossbar. Thats what you get when you plan a build and buy parts before you get the bike in hand to work with directly. You will want to just cut a short length of hose and back it with a washer.

Line the inner lengthwise bars

You are going to do one of three things here:

  1. Line the inner bar with 2 or 3 layers of heatshrink. Do multiple layers in case you scuff or ding the bar. Just one layer is easily torn. This was my initial build because its all I had figured out how to do at the time.
  2. Line the inner bar with a length of garbage disposal hose. to match all the other bars. Using the disposal hose is cosmetic on the inner bar, but it is more durable and will give you a consistent, beefy look. Doing this is almost the same cost as using the comparatively fragile heatshrink. If starting over from scratch, I would go this route.
  3. Do nothing and leave the bar bare. If you like the bare look then great you are done.

Install the inner lengthwise bars

At this point you are ready to do the final install of the inner lengthwise bars. Having attached any desired covering to the bar, loosely reattach the tees to the bar and slide it on just as in Step 3, again making sure the grub screws for the tee fitting are facing up. When in place up against the spacers you cut and installed above, its time to tighten the screws.

This is one of the few times a thread locker is properly in order vs. being a misused crutch. I personally prefer Vibra Tite. The blue gel is easy to apply, never hardens and holds tight regardless of vibration and impacts over time. Goop up the threads of each grub screw and tighten them into the softer alloy tubing until they are roughly flush-fit to the fitting. Nothing is going anywhere once that is done.

Line the remainder of the crossbar

Now you need to line the next section of crossbar if you care to do so. At this point I will say that heatshrink should not be an option – go with the flexible PVC (or do nothing if thats your bag). Cut each length to size and slide onto the tube.

Line the outer bars (or don’t)

Almost the same procedure as the inners: Affix your elbows to the tube and attach the tube assembly to the crossbars. Now you know how much exposed crossbar there is. measure this and cut your outer bar liner/bumper. Tighten ONE of the elbows onto the outer bar and remove the elbow from the crossbars. Now you are holding the outer bar with one elbow attached. Take your cut liner and slide it down until it is snug against the installed elbow. If you cut the liner to the proper length, it is now installed perfectly centered.

Since I did my bumpers after the initial build, I lined the outer bars first – the crossbars are bare in this pic.

Install the outer bars

Loosely attach the second elbow to the outer bar. Slide the assembly over the crossbars. Tighten all the grub screws down so there are no gaps, using thread locker and again tightening so the grub screws are roughly flush with the outer wall of the fitting.

We’re almost done .

Step 6: Add the Floor (Straps)

Up to this point we’ve created an empty framework. It needs a floor to help hold up the Great Big Bags that will be sitting on top of it. I opted to use 2″ x 30″ hook-and-loop cinch straps, 4 on each side, which are movable, super lightweight, have some give to them but at the same time are very strong.

I had to buy two 6-packs of straps to get what I want, so I could add more straps, but 4 is enough and more importantly I can space the straps in such a way they work in complement to the four pannier straps I use to provide additional support on heavy loads.

Since the bag straps also have to wrap around the inner bars of the wideloaders, the floor straps have to be out of the way, and what you see is spaced out to let me interleave the bag straps between the floor straps.

A Final Note on the Floor

At around $30, the floor straps added a noticeable bump up in job cost. Is there a cheaper way to do this? Probably. I considered a bunch of ideas including diagonally weaving super thick bungee cord into a floor. I have a spool of the stuff in my garage.

What about more tees and crossbars with the leftover tubing bits? Without question that would look great and be supremely sturdy… but is it necessary? I don’t think so, and I didn’t feel like taking the time, adding the weight or going to the expense. But for sure, it would look great. In the end I felt the straps got me to the finish line immediately and were easiest to manage over time.

What about skateboards?

Well, that would work great. If you are a parent and your wideloaders need to serve as platforms for little feet, and maybe you want your kids to be able to stand on them, then a skateboard is a great option. If you use the really thick 6063-T5 tubing it will for sure be well-suited to a couple of M5 holes drilled thru each bar to attach that board, front and rear. From there, find a blank deck to your liking and bolt that sucker on.

The floor straps are spaced so I can interleave two more bag straps between the two center floor straps for extra support with heavy loads.

Job Done. They Work Great!

These pics are from the initial build, and reflect the parts I used for spacers at that time, along with some showing a different strap setup. Your results may vary so the bags you buy or build may dictate a still different approach.

The Pacific Fleet

or… I Have Too Many Damn Ebikes

Since I got back into bikes (thanks to ebikes being a viable platform to let this cardiac-issues ex-cyclist start riding again), I have gotten right back into building bikes up, oftentimes from scratch. At this point I really have to stop simply because I have no more room to park the things.

Up to this point I have only written about my Mongoose Envoy, a very recent arrival, and have just begun getting into my Surly Big Fat Dummy, which is more recent still.

What else is in the stable? I’ll do some very quick mentions here and then over time branch out and describe each more fully in separate posts.

The Lizzard King

So named because thats the name Larry vs. Harry gave this green color of their Bullitt cargo ebike. I bought a frame kit from Splendid Cycles up in Oregon in January of 2021, and did an all-out AWD build on this bike which I completed in March of the same year. That included putting in a basement that holds a secured (big) battery. This will be a bike that gets fairly extensively written up. For now I’ll just drop this note that the bike exists, I’m riding it, and here’s a couple of pictures.

The Great Pumpkin

So named because of its very nice bright candy orange color (done at a local powder coat shop for next to nothing) you can call this one my third generation of 2wd bikes. Twin 35a controllers. A single custom-built 30ah 52v (14S9P) battery with a BMS able to handle 90a continuous current. Twin 750w-rated geared hub motors that commonly peak (each) at over 1700w. This bike accelerates like a bullet if I let it do so. But to keep the frame in one piece and me from being launched into traffic I have toned down both motors. Now I am merely the first vehicle to the other side of the intersection after a stoplight turns green.

It has synchronized dual pedal assist as well as brake cutoffs that individually shut off both motors on application. It has thousands of miles on it; all street commuting. Gearing is set up for 34 mph at about 70 rpm cadence. That is just a bit faster than the motors can power the bike, so if I want to cruise down the street at 30+ mph I have to work at it a bit more than you would think for a fairly high powered ebike. I get a strong workout due to this gearing.

The frame is a chromoly Chumba Ursa Major, with a Surly Ice Cream Truck front fork where the brake adapter on that fork was specially modified to get around the ICT’s rear-wheel brake spacing.

For a closer look at this bike and its AWD system follow the link and lookit here.

2Fat

While the build of this bike pre-dates The Great Pumpkin, it was actually designed as a next-gen design to follow another 2wd bike (see the Purple Thing below) that pre-dated both bikes. So if the Pumpkin is 2wd 3.0, this one is 2wd 2.0. This one does not have the single unified battery, and its handlebar config is not as well done (two clocked-position throttles are on the left grip instead of one on each thumb… I hadn’t discovered shifters that would allow me to do the latter yet). However, it also sports a 30a, 1750w mid drive powering the back, and has the same fat hub motor as the Pumpkin powering the front. It too has dual pedal assist, but done in a completely different way given the dissimilar motors and controllers. 2Fat was created because of the learned weaknesses of even a powerful dual geared hub design in hill country. 2Fat was designed to climb walls effortlessly, and it will, without issues of overheating or strain.

100mm custom wheels with a DT 350 Big Ride ratchet rear hub and steel cassette body, Lynskey titanium frame is a prototype made along the lines of Chumba’s Ursa Major ti version of that frame. Possibly it was made as part of a pitch by Lynskey to make the frames for Chumba. Its hard to say for sure so essentially, the frame is unique, or close to it. I do know it is visually almost identical to the Chumba production models except the dimensions do not match any of their production frames.

For a closer look at this bike and its AWD system follow the link and lookit here.

The Smash

A big departure from my usual bikes. The Smash is a 29er … and a bike with no job. With a 3kw Cyc X1 Pro motor, a 50a ASI BAC800 controller and a 20ah 52v backpack battery, this bike is strictly a hot rod. And no, despite those big power numbers its not as powerful as you might think. Certainly it doesn’t tear up trails. This is one of the last alloy frames Guerrilla Gravity made before switching to carbon fiber later in the same month I placed my order. The MRP Ribbon fork on the front is a jewel. Also has a RockShox coil spring, a complete SRAM EX drivetrain and my usual Magura MT5e brakeset.

I’m glad I took these pics right after the build was completed because it will never be this clean again. Ever. Also the pump location and top tube bags only lasted as long as this photoshoot as they violated my ‘festooning’ rule.

The Stormtrooper

So named because of its black/white color scheme. The Stormtrooper is just a really nice, simple fat tired ebike – with deep dish 90mm carbon fiber rims. Noteworthy on this bike is that it has plenty of motor and battery cabling running all over the place, but I sheathed the wires (even the brake and shifter lines) in white heat shrink. The matching color effectively hides all the wiring in plain sight for a very clean look. the bike is light and fun, with good range from its mid-sized 12ah potted ‘indestructo’ battery.

This frame was a rescued Motobecane Lurch that was stripped, sand blasted and powder coated.

The Mongoose

One of the few bikes I have written up here, The Mongoose Envoy has its own extensive writeup already. The Pacific Fleet’s first aircraft carrier thanks to the 44″ skateboard deck.

The Big Fat Dummy

One of the more recent addition to the Pacific Fleet, The Surly Big Fat Dummy is its second aircraft carrier, with a 40″ skateboard deck (and below-deck hangar) putting the length of this behemoth at just over 8 feet. This bike has a complete and detailed writeup here.


Sunk

In no particular order, the ships that are no longer in the fleet

The Fixed

An even bigger departure is my Luna Fixed, which despite having custom DT wheels, is largely a factory bike and was bought primarily as a test platform. I fell in love with the design concept (stealth ebike), but it also had an internally geared hub, a Gates belt drive and torque sensing. These were three technologies I had yet to experience and I decided this bike was going to be how I learned about all three on one bike.

Its the only ebike I have ever ridden that feels like a road bike from the 1970’s. I re-did the handlebars to a more urban narrow config, added bar ends, changed the stem, saddle and pedals… not a lot else. Its for sale It was sold on eBay as I’m largely done with it, its still effectively new and I never ride the thing. I’ve always been a commuter and a utility rider and this bike is purely a leisure exercise, or for someone who needs to make a quick store trip and doesn’t already have a stable of bike better suited to the job.

I will miss one big thing when it sells: Its the only bike I can just toss into the back of my SUV and not make a major production out of loading onto a super heavy duty bike rack. Like recreational riding, I don’t do that either but someday I bet I wish I still could.

Frankenbike

Now in the hands of a friend who needed a ride. Frankenbike was cobbled together from leftover parts from an upgraded electric bike, plus other goodies. It was my first 2-rack cargo-oriented bike. I painted the frame myself using Main Force Pursuit (MFP) Yellow. Google that if you don’t get it. The frame is identical to the Purple Thing, below.

The Stump

Murdered by a careless auto driver who t-boned it and me while I was thoughtlessly riding slow in the bike lane with headlights and after making eye contact. The Stump was a little hotrod that never made it past the initial shakedown cruises before its demise. Paid for by the other driver’s insurance company but left in my possession, I donated the damaged but still fully functional motor to another cyclist who could make good use of it

The Purple … Thing

Essentially this was 2wd 1.5. I transferred my parts from the 2wd 1.0 bike when I cracked the frame, and made a few improvements. Since it was an emergency build to get my daily commuter back on the road, I didn’t do a lot of measuring and took what I could get framewise. It didn’t quite fit me and a year later one of these motors and some of these parts moved to The Great Pumpkin. The frame is still sitting dust-covered in a corner of my garage.

The Colonel

The bike that got me started back on two wheels again and changed my life for the better. A Sondors Original fat ebike whose cost was so low at around $700, I was willing to toss the money out the window and take a chance this whole ebike thing was going to allow me to get back onto a bicycle. By the time my first year was up I had put more than 4000 miles on it. I had also changed out almost every component but the frame, and converted it to all-wheel-drive.

The Colonel died with his boots on. After almost 6000 miles on the road, supporting a whole lot more power and speed than it was ever designed to bear by its original Chinese overlords, the rear seatstay cracked at the lower rack boss. My philosophy on frame cracks is not to repair them as where there’s one crack there will likely be more showing up soon. Components were transferred to The Purple Thing along with several upgrades.

Great Big Bags 2.0 – 138L (each) Panniers… Seriously?!

My first set of Big Bags were 77L each, almost the same size as the largest generally available cargo bike pannier (and 1/3 the price). It turns out you can go a lot bigger than that and stay practical.

The Surly BFD Project Menu
Prologue
Episode 1: 138L (each) Panniers… Seriously?! (you are here)
Episode 2: Big Fat Dumb Wideloaders
Episode 3: Kickstand Kaos
Episode 4: Add a Flight Deck. And a Hangar
Episode 5: Leftovers

When I put together my first set of Big and Cheap DIY Cargo Bike Bags, I thought two 77L panniers were huge! I fit them onto my Mongoose Envoy cargo bike project, and for several months they have been great, but not quite perfect. Not because of the capacity of the things. They were perfectly sized for that mid tail frame. But there were a few convenience issues … you’ll see below what my solutions were.

Why go bigger?

Well, I liked the Mongoose mid tail so much (it was my first dedicated cargo bike) I decided to jump all in and go for a full sized longtail with as much capacity as I could get my hands on. The Surly Big Fat Dummy was a bike I had *almost* bought before the Mongoose, and I decided with its fat tires, sheer size and very stiff frame it would offer the larger carry capacity and greater versatility I was after.

Going from a mid tail to a long tail meant I had more room for bigger bags. I could do the Rothco 77L canvas bags again, but after quite a bit of shopping around, I found Rothco’s larger, heavy-canvas 34″ long, square zipper’d duffel bag was dimensionally just about perfect to fit the BFD’s rear cargo area.

But, I am getting ahead of myself.

Parts List

$92.00 Rothco Jumbo Canvas Cargo Bag (qty 2)
  7.08 C.S. Osborne #5 5/8" hole Brass Grommets (qty 10)
 44.00 Cross Linked Polyethylene - 2lb, yellow 72"x48
 15.00 7/8" thick hardwood dowel (qty 2)
 20.00 12" soft cargo loops, 6 pak (qty 2)
  7.21 7/8" rubber chair feet 4 pak
 36.00 74" buckled 2" wide luggage strap 2 pak (qty 4)

Total Project Cost: About $221.00.
Result: 276L of pannier space. Two Hundred and Seventy Six Liters.

Notes on the Parts List

Foam
I am sure you can find something cheaper. I wanted something bright yellow so I could see the contents of the bag easily. Cross linked polyethylene is essentially a thin version of gym mat material. Extremely fine-celled. I have used Foam Factory for some esoteric jobs in business for custom cut stuff and found they had what I was after. What you want here is a big single sheet of foam that wraps entirely around the bag interior. The large foam sheet specified here is just over double what you need. Cut it in half, shave a few inches off one side and its a perfect fit. As an alternative you might try a couple of the Therma Rest mattresses that I used in my original bags, and some gorilla tape.

Grommets
You can also use #6 grommets just like I did with the original Big And Cheap Bags. It all depends on what tools you have in your garage. If you have no grommeting tools whatsoever, this #5 size midget grommet kit will give you everything you need – the tool and plenty of grommets. Cost is about $56 and you will have plenty of grommets left over so you can hammer reinforced holes into more things.

The Wooden Dowels
You can go to Home Depot and pay about half what you will at Amazon. Thats what I did, and HD has a handy manual-cut station you can use to cut the rod down if you don’t have a saw (please buy a saw instead). I only put Amazon as a source so there is an online purchase choice.

The Luggage Straps, Part 1
I specified four 2-paks for a total of 8 straps. 4 per side. Generally you only need two. But when carrying really heavy items, like the pictured load below (still in the shopping cart) that weighed about 128 lbs (58 kilos) … you want more straps to help take the burden off of your wideloaders. So, you can buy fewer straps. Or you can buy the max that will fit and toss the spares into your cavernous panniers and forget about them until they are needed. Your choice.

My first shopping trip with these bags was a Costco run. I didn’t realize I had almost 130 lbs in the cart. The duffel in the bottom goes onto the deck and was at least another 20 (Just the lock is 15 lbs).

The Luggage Straps, Part 2
Notice in the pic above, and in my previous Big Bag posts, I used 2″ and then 3″ wide velcro straps (a single 3″ above). these hold fine, but in daily use, velcro is… velcro. It is constantly sticking to things it decides to stick to, and generally making my life more difficult. The straps do indeed do their job, but first and foremost just finding 3″ wide straps long enough to work with these bags is very difficult (and a process I will not describe since I abandoned them). Also these 3″ extra-long unicorns are just too damned expensive. Kydex buckled straps unbuckle in an instant, don’t stick to themselves or anything else, fit 4 to a side which is plenty and cost less to boot. Lastly, the luggage straps I am specifying adjust from 40″ to 74″ which is perfect for folding the bags up, empty, and expanding them out when full. Since the excess strap length is captured via a sewn-on sleeve, nothing is ever flopping around.

Whats With The Dowels?

My original Big Bags used hooks, and I went to a fair amount of trouble to make sure they were absolutely planted and rattle-free. And they are all that. But still, I thought there has to be a better way, and I ended up coming up with one.

Using dowels and cargo loops for hanging the bag has major benefits over hooks:

  • It doesn’t rattle
  • It is light weight (lighter still if you use an alloy tube)
  • It is cheap (less so if you go alloy)
  • It distributes the load on the bags evenly across their entire length
  • It holds them fully secure
  • There are no points of excessive wear/rubbing.

And last but not least, they make bag removal and reattachment a snap. The process described in a nutshell:

STEP 1: Loop-tie five cargo loops per side to the Dummy rails, and loop those up thru the deck itself so they drape down. If you are not making bags for a Surly or Xtracycle-compatible cargo bike, use as many loops per side as you can, as well-spaced as you can make them.

Here is one of my early fitments when I was figuring this all out.

STEP 2: Create 5 grommet holes in the top inside edge of each bag. One on each top corner, and the remaining three positioned so they are roughly equally spaced down the side of your rack. the exact positions will vary depending on your rack. I illustrated the whole grommet-creation process in the original bag creation post. But worth noting for these bags I used smaller #5 grommets and I really prefer this smaller size.

STEP 3: Line up your now-holey bag with the dangly loops and, one at a time, put each loop into each corresponding bag hole. As you do this, thread your dowel thru the loop on the inside of the bag.

Here is what this looks like with no bag in the middle


Annnnnd with the bag:

STEP 4: Remember the rubber chair feet? Put one on each end of the wooden dowel. This keeps the bag from rubbing on a relatively sharp edge of cut wood. Sooner or later it will rub enough to wear thru the canvas. But not if you have a big soft round rubber bumper on that edge.

Note the above pics show a 1.25″ wooden dowel. I downsized to 7/8″ and its much easier to fit the loops thru when putting the bag back on. You can see the smaller version in the pics below. Original concern was the dowel bending, but there are so many cargo loops to suspend it… thats not going to happen.

Spend a few minutes with some fine-grit sandpaper to make the imperfect surface of your dowel silky smooth.

Bag Removal and Re-Attachment

Here it is in a few easy steps. I photographed my first bag removal as you see, and I timed the second with a stopwatch. It took 30 seconds to detach the bag and another 15 seconds to toss the straps in and zip the bag up.

You can forget about making something that fast and easy with hooks.

STEP 1: Unbuckle the two bag straps. Pull the top inside corners of the bag back so each end of the wooden dowel is visible.

STEP 2: Pull off the rubber foot from one side. I removed the rear one this time.
STEP 3: Pull the dowel out from the other side. Its only halfway out in the picture. It will slide out quickly and easily.

STEP 4: DONE. The bag is now free. It is now a big duffel bag with handles you can lug into the house with all its contents. Feel free to use the shoulder strap that came with it.

Did I Mention The Kangaroo Pouch?

Yes really. Just like the original bags, Big Bags 2.0 are typically folded up when empty. The foam liner inside means the folds are fairly thick and a pouch is created in the fold. For bags this big, its pretty deep, too. And almost three feet long. Check out how I almost disappear a 2 lb sledgehammer into it, standing on its end, below.

That makes for secure storage of most daily-use items. On a typical day, a small backpack with my work clothes, pouch with my keys and alarm remote and garage door opener, and another with my wallet and phone are all snuggled in one side or the other. Road bounces and vibrations don’t disturb them, and there is enough room left over that I don’t have to open the bags up at all unless I am on a shopping trip. So as big as these things are, if anything they handle small jobs just as well as the the large ones they were designed for.

I used to think the 77L bags were crazy big. I spent a lot of time agonizing over whether I was wasting time and money even attempting to go bigger with these duffel bags. Now, having had some time to live with them and on more than one occasion to stuff them full, I can’t imagine why I would want to go smaller.